
Convex Regression

February 17, 2025

In this homework, we’ll work through the idea and implementation of convex
regression. We will focus on the one-dimensional case, although it extends
very naturally to higher dimensions. Then we’ll look into rates of convergence,
comparing this new method to the stuff we’ve been using.

In my code, I’ll be using a few libraries.

library(CVXR)
CVXR::add_to_solver_blacklist('OSQP')
OSQP claims some feasible problems aren't

And some functions we’ve been using in labs.

invert.unique = function(x) {
o = order(x)
dup = duplicated(x[o])
inverse = rep(NA, length(x))
inverse[o] = cumsum(!dup)
list(elements=o[!dup], inverse=inverse)

}

prediction.function = function(model) {
function(x) { predict(model, data.frame(X=x)) }

}

1 Convexity
In some cases, we may believe that a curve we want to estimate is convex. A
differentiable curve m is convex if its derivative is increasing.1 More generally,
a curve m is convex if all of its secants (line segments drawn from one point on
the curve to another) lie above the curve, i.e., if for all points a and b it satisfies

m {(1− λ)a+ λb} ≤ (1− λ)m(a) + λm(b) for all λ ∈ [0, 1]. (1)

This inequality is, in mathematical notation instead of visual language, exactly
what we said about secants. The left side is the height of the curve at xλ =
(1− λ)a+ λb and the right is the height of the secant connecting a to b at xλ.

1

Characterizing points on secants. Keep in mind that any point x on the
segment between a and b can be written in the form xλ = (1 − λ)a + λb for
λ ∈ [0, 1]. To do this, we simply solve the equation xλ = (1− λ)a+ λb for λ in
terms of x, i.e., we take λ = (x − a)/(b − a). This is pretty intuitive: λ is the
fraction of the distance from a to b that we have to travel to get from a to x.

Examples. Here are some examples of convex curves.

1. f(x) = x2

2. f(x) = ex

3. f(x) = e−x

4. f(x) = x

0.0

2.5

5.0

7.5

−2 0 2

square

0

5

10

15

20

−2 0 2

exp

0

5

10

15

20

−2 0 2

expminus

−2

0

2

−2 0 2

line

2

Here are a few curves that aren’t convex.

1. f(x) =
√
x

2. f(x) = (x− 1/2)3

3. f(x) =

{
0 if x < 0

1 if x ≥ 0

4. f(x) = −ex

0.0

0.5

1.0

1.5

0 1 2 3

squareroot

−20

−10

0

10

20

−2 0 2

cube

0.00

0.25

0.50

0.75

1.00

−2 0 2

step

−20

−15

−10

−5

0

−2 0 2

minusexp

Exercise 1 On the eight plots above, draw a few secants. For the non-convex
curves, make sure at least one is below the curve somewhere between the secant’s
endpoints.

1.1 Differentiable Convex Functions
Now that we’ve got a sense of what’s going on visually, let’s argue that our more
general definition based on (1) is consistent with the informal definition based

3

on derivatives I used in our first lecture.

Exercise 2 Explain why, if a curve m(x) is differentiable, it satisfies (1) if and
only if its derivative m′(x) is increasing.

Hint. Here are two equivalent statements we can derive from (1) by taking
λ = (x− a)/(b− a) and λ = 1− (x− b)/(b− a) respectively.

m(x) ≤ m(a) +
m(b)−m(a)

b− a
(x− a) for all x ∈ [a, b]

m(x) ≤ m(b) +
m(b)−m(a)

b− a
(x− b) for all x ∈ [a, b].

(2)

Rearranging, we get inequalities relating two slopes, one of which is the same
in both cases.

m(x)−m(a)

x− a
≤ m(b)−m(a)

b− a
for all x ∈ [a, b]

m(b)−m(a)

b− a
≤ m(b)−m(x)

b− x
=

m(x)−m(b)

x− b
for all x ∈ [a, b].

(3)

What do these two equations together imply if we take x → a in the first and
x → b in the second? This should help you show that convexity in the sense of
(1) implies the increasingness of the derivative.

Another Hint. The mean value theorem tells us that, letting xλ = (1−λ)a+
λb,

f(xλ)− f(a)

xλ − a
= f ′(ã) for some point ã ∈ [a, xλ]

f(b)− f(xλ)

b− xλ
= f ′(b̃) for some point b̃ ∈ [xλ, b]

(4)

If f ′ is increasing, how are these ratios related? And what, in terms of λ, a, and
b, are their denominators? This should help you show that the increasingness
of the derivative implies convexity in the sense of (1).

Solution 2 Let’s start with the only if part, i.e., showing that convexity implies
increasingness of the derivative. We’ll use the first hint. If f is convex, (3)
is true. Taking the limit as x → a in the first inequality in (3) gives us the
inequality m′(a) ≤ {m(b) − m(a)}/(b − a). Taking the limit as x → b in the
second gives us {m(b)−m(a)}/(b− a) ≤ m′(b). It follows that f ′(a) ≤ f ′(b).

Now let’s do the if part, i.e., showing that increasingness of the derivative
implies convexity. We’ll use the second hint. Because the derivative is increas-
ing,

f(xλ)− f(a)

xλ − a
= f ′(ã) ≤ f ′(b̃) =

f(b)− f(xλ)

b− xλ
.

Here the denominators are xλ−a = {(1−λ)a+λb}−a = λ(b−a) and b−xλ =
b−{(1−λ)a+λb} = (1−λ)(b−a), so dropping the common factor of 1/(b−a),

4

we can rephrase this inequality as {f(xλ)− f(a)}/λ ≤ {f(b)− f(xλ)}/(1− λ).
Multiplying by λ(1−λ), this gives {f(xλ)−f(a)}(1−λ) ≤ {f(b)−f(xλ)}λ, and
adding (1−λ)f(a)+λf(xλ) to both sides to rearrange, we get f(xλ){1−λ+λ} ≤
(1− λ)f(a) + λf(b).

1.2 Convex Sets
There’s a related notion of a convex set. We won’t be using this for convex
regression part of this homework, but it’ll come up in lecture soon.

A convex set is a set that contains all line segments between points in it.
That is, a set S is convex if and only if, for all points a, b ∈ S, (1−λ)a+λb ∈ S
for all λ ∈ [0, 1]. Here are a few examples.

In 1D. A point, a line segment, or a line.

In 2D. A filled-in triangle, square, or circle; the positive half-plane {(x, y) ∈ R2 :
y ≥ 0}; or the whole of R2.

Generally. A ball, the set {v : ρ(v) ≤ r}, of any radius r in any seminorm ρ.

Here are a few sets that aren’t convex.

In 1D. Two points. Or the union of two disconnected intervals, e.g. {x : x ∈
[−1, 0] or [1, 2]}.

In 2D. A not-filled-in triangle, square, or circle.

In 3D. A sphere, the set {v : ‖v‖ = r}, of any radius r > 0 in any norm.

Exercise 3 Prove that a ball in a seminorm ρ is convex.

Tip. Use the triangle inequality.

Solution 3 If a and b are any points in a ball of seminorm of radius r, then
so is (1− λ)a+ λb for any λ ∈ [0, 1], as

ρ{(1−λ)a+λb} ≤ ρ{(1−λ)a}+ρ{λb} = (1−λ)ρ(a)+λρ(b) ≤ (1−λ)r+λr = r.

Exercise 4 Using the norms we discussed in our Vector Spaces Homework,
explain why that implies that the filled-in square {(x, y) : |x| ≤ 1, |y| ≤ 1}, circle
{(x, y) : x2 + y2 ≤ 1}, and diamond {(x, y) : |x|+ |y| ≤ 1} are convex.

Solution 4 They are the unit balls of the infinity-norm, two-norm, and one-
norm respectively.

Exercise 5 Prove that a sphere of nonzero radius in any norm is not convex.

5

Tip. Revisit the proof that seminorms are positive from the Vector Spaces
Homework.

Solution 5 If v is any point on such a sphere, so is −v, as ‖−v‖ = |−1|‖v‖ =
‖v‖. If the sphere were convex, this would imply that it contains the point
0 = (1/2)v + (1/2)(−v), but zero cannot be in a sphere of any nonzero radius
as ‖0‖ = 0.

Exercise 6 Draw, in 2D, a non-convex set that isn’t included in the examples
above.

Exercise 7 Explain why the intersection of two convex sets, i.e. the set of
points that are in both of them, is a convex set.

Solution 7 The segment between any two points in the intersection is, as a
result of the convexity of each set, is in both sets and therefore in the intersection.

1.3 Convex functions have convex epigraphs
Here’s another way of thinking about what convex functions look like. A func-
tion is convex if and only if its epigraph, the set of points on or above the curve,
is convex. This is the definition of the epigraph of a function in mathematical
notation. Epi(f) = {(x, y) : y ≥ f(x)}.

Exercise 8 On the plots below, fill in the epigraph.

0.0

2.5

5.0

7.5

−2 0 2

square

0

5

10

15

20

−2 0 2

exp

6

0

5

10

15

20

−2 0 2

expminus

−2

0

2

−2 0 2

line

0.0

0.5

1.0

1.5

0 1 2 3

squareroot

−20

−10

0

10

20

−2 0 2

cube

0.00

0.25

0.50

0.75

1.00

−2 0 2

step

−20

−15

−10

−5

0

−2 0 2

minusexp

Exercise 9 (Optional) Explain why this epigraph-based definition is equivalent
to the secant-based definition above in (1). You don’t have to give a formal
proof.

7

Tip. To show these definitions are equivalent, show that the convexity of a
function’s epigraph implies the convexity of the function and that the convexity
of a function implies convexity of its epigraph. The latter part is a little harder.
For intuition, try drawing a segment in a convex function’s epigraph and the
secant below it.

Solution 9 Let’s start with how convexity of a function’s epigraph implies con-
vexity of the function. Because points on a curve are in its epigraph, a secant
is the line segment between two points in the epigraph; convexity of the epigraph
implies this segment is in the epigraph, i.e., above the curve itself.

Now let’s talk about why convexity of a function implies convexity of its
epigraph. We’ll rely on the fact that if we have two segments with matching x
coordinates, and the y coordinates of one segment’s endpoints lie above those of
the other, then that segment lies above the other in its entirety, i.e.,

(1− λ)ya + λyb ≥ (1− λ)y′a + λy′b if ya ≥ y′a and yb ≥ y′b.

Because any two points (a, ya) and (b, yb) in the function’s epigraph lie (by
definition) above the endpoints of the secant (a, f(a)) and (b, f(b)), and the
secant lies above the curve and the segment between our first two points above
the secant, it follows that the segment between the first two points lies above the
curve, i.e., in the epigraph.

2 Convex Regression
Now that we’ve developed some intuition for what a convex function is, let’s
implement convex regression. That is, let’s solve

µ̂ = argmin
convex m:R→R

1

n

n∑
i=1

{Yi −m(Xi)}2. (5)

For this, we’ll follow the same steps we used in the Monotone Regression Lab.
We’ll first solve a version of this problem for convex functions on the sample
X = {X1 . . . Xn}, then extend our solution to the real line.

3 Fitting the Convex Regression Model
What does it mean for a function on X to be convex? We’ll start with the
same ‘secant’ definition we use for functions on R, then forget about points that
aren’t in X . That is, we’ll say that m : X → R is convex if and only if

λm(a) + (1− λ)m(b) ≤ m{(1− λ)a+ λb}
whenever a, b, and xλ = (1− λ)a+ λb with λ ∈ [0, 1] are all in X .

And we’ll solve the restricted problem.

µ̂|X = argmin
convex m:X→R

1

n

n∑
i=1

{Yi −m(Xi)}2. (6)

8

Exercise 10 Rewrite the optimization problem (6) more concretely in terms
the values of X1 . . . Xn and m(X1) . . .m(Xn).

Then translate it into a a constrained optimization over a vector ~m, so that,
once you’ve solved for the optimal vector ~µ, you can express µ̂|X (X1) . . . µ̂|X (Xn)
in terms of the elements of ~µ (e.g. you might use µ̂|X (Xi) = ~µi if X1 . . . Xn are
distinct.) Try to do it so what you’ve written translates straightforwardly into
CVXR code.

Tips.

1. You should have a constraint for all triples (i, j, k) for which Xi < Xj <
Xk. There is a smaller set of constraints that implies all of these, and
we’ll get there in Exercise 21, but it’ll take some work. For now use the
full set, like we did until the section ‘Optional Exercise: Optimization’ in
the monotone regression lab.

2. If you want to keep things simple, go ahead and assume that X1 . . . Xn

take on n distinct values, just like we did at the beginning of the monotone
regression lab. If you want more generally applicable code, take a look
at how we use invert.unique in the monotone regression lab to handle
duplicate values.

Solution 10 We’ll get a constraint for all triples (i, j, k) for which Xi < Xj <

Xk. This constraint arises from (1) with a = Xi, b = Xk, and λ =
Xj−Xi

Xk−Xi

chosen so that Xj = (1− λ)Xi + λXk. It’s

m(Xj) ≤
(
1− Xj −Xi

Xk −Xi

)
m(Xi) +

Xj −Xi

Xk −Xi
m(Xk)

which we can rearrange to get the equivalent statement that the slope of the first
secant is less than that of the second, i.e.,

m(Xj)−m(Xi)

Xj −Xi
≤ m(Xk)−m(Xi)

Xk −Xi
.

If we want an equivalent form without division, we can multiply by the product
of these denominators, yielding

{m(Xj)−m(Xi)}(Xk −Xi) ≤ {m(Xk)−m(Xi)}(Xj −Xi).

Exercise 11 Implement that optimization in R. That is, write an R function
convexreg analogous to monotonereg from the monotone regression lab that
solves (6). Then, from the eight distributions described below, sample n =
25 observations (X1, Y1) . . . (Xn, Yn) and use your code to calculate predictions
µ̂(X1) . . . µ̂(X1) based on the solution to (6). Each time, plot your predictions
on top of the data, i.e., make a single scatter plot showing both your predictions
(Xi, µ̂(Xi)) and your observations (Xi, Yi). Turn in those eight plots, labeling
each with the signal used, as your solution to this exercise.

9

We’ll use as our signals µ the eight examples of convex and non-convex functions
in Section 1. For each, we’ll work with independent and identically distributed
observations (X1, Y1) . . . (Xn, Yn) where Xi is drawn from the uniform distribu-
tion on [0, 1] and Yi = µ(Xi) + εi for εi drawn from the normal distribution
with mean zero and standard deviation σ = 1/10.

Tip. CVXR seems to be having some trouble with this one if we use division
in our constraint, so don’t. To write your constraint without division, observe
that the following set of constraints are equivalent: (i) a/b ≤ a′/b′ and (ii)
ab′ ≤ a′b.

Solution 11 convexreg = function(X,Y) {
input = list(X=X, Y=Y)
n = length(X)
m = Variable(n)
mse = sum((Y - m)^2) / n

grid = expand.grid(i=1:n, j=1:n, k=1:n)
grid_ordered = grid[X[grid$i] <= X[grid$j] & X[grid$j] <= X[grid$k],]
ii = grid_ordered$i
jj = grid_ordered$j
kk = grid_ordered$k
convex.constraint = list((m[jj] - m[ii]) * (X[kk] - X[ii]) <=

(m[kk] - m[ii]) * (X[jj] - X[ii]))

solve and ask for m that solves our minimization problem
solved = solve(Problem(Minimize(mse), convex.constraint))
mu.hat = solved$getValue(m)

now a little boilerplate to make it idiomatic R
1. we record the input X and the solution mu.hat in a list
2. we assign that list a class, so R knows predict should
delegate to predict.convexreg
3. we return the list
model = list(X=X, mu.hat=mu.hat, input=input)
attr(model, "class") = "convexreg"
model

}

save this for comparison to an optimized implementation below that we'll also call convexreg
convexreg.slow = convexreg

10

mus = list(square = function(x) { x^2 },
exp = function(x) { exp(x) },
expminus = function(x) { exp(-x) },
line = function(x) { x },
squareroot = function(x) { sqrt(x) },
cube = function(x) { x^3 },
step = function(x) { 1*(x >= .5) },
minusexp = function(x) { -exp(x) })

make.plot = function(mu,fit=convexreg, seed=1, n=25, line=FALSE, points=TRUE) {
set.seed(seed)
sigma = .1
X = runif(n)
Y = mu(X) + sigma*rnorm(n)

model = fit(X,Y)

p = ggplot() + geom_point(aes(x=X,y=Y), alpha=.2, data=data.frame(X=X,Y=Y))
if(points) {

p = p + geom_point(aes(x=X, y=mu.hat), alpha=.4, color='blue',
data=data.frame(X=model$X, mu.hat=model$mu.hat))

}
if(line) {

x = seq(.001,1,by=.001)
line.data = data.frame(x=x,

mu=mu(x),
mu.hat=predict(model, newdata=data.frame(X=x)))

p=p + geom_line(aes(x=x, y=mu), data=line.data) +
geom_line(aes(x=x, y=mu.hat), color='blue', data=line.data)

}
p

}

11

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75 1.00

square

1.0

1.5

2.0

2.5

0.25 0.50 0.75 1.00

exp

0.4

0.6

0.8

1.0

0.25 0.50 0.75 1.00

expminus

0.25

0.50

0.75

1.00

0.25 0.50 0.75 1.00

line

0.4

0.6

0.8

1.0

0.25 0.50 0.75 1.00

squareroot

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75 1.00

cube

0.0

0.5

1.0

0.25 0.50 0.75 1.00

step

−2.5

−2.0

−1.5

−1.0

0.25 0.50 0.75 1.00

minusexp

Exercise 12 Revisit the curves µ̂ you fit in the last exercise. For each, answer
these questions.

1. Does it fit the data?

2. If not, what other model we’ve talked about could we do to fit the data
better?

Then, if there is a better model, use it and include the resulting plot.
Solution 12 The ones that fit well are the convex ones—the square, exp, exp-
minus, and line—and the cube. The cube works because, while it’s not convex
as a function on R, it is convex as a function on [0, 1], and we’re using a
distribution for which X1 . . . Xn ∈ [0, 1].2

The remaining ones—the square root, step, and minusexp—are all monotone
with total variation one, so we’d be better off using monotone or bounded vari-
ation regression. On the left, I show the results of monotone regression, and on
the right, I show the results of bounded variation regression with budget B = 1.

12

0.4

0.6

0.8

1.0

0.25 0.50 0.75 1.00

squareroot: monotonereg

0.4

0.6

0.8

1.0

0.25 0.50 0.75 1.00

squareroot: bvreg

0.0

0.4

0.8

0.25 0.50 0.75 1.00

step: monotonereg

0.0

0.4

0.8

0.25 0.50 0.75 1.00

step: bvreg

−2.5

−2.0

−1.5

−1.0

0.25 0.50 0.75 1.00

minusexp: monotonereg

−2.5

−2.0

−1.5

−1.0

0.25 0.50 0.75 1.00

minusexp: bvreg

3.1 Filling in the gaps
At this point, you have an estimator µ̂|X that minimizes squared error among
the convex functions m : X → R. This lets us plot some isolated points. But
we want a convex curve µ̂(x) for x ∈ [0, 1] and we want it to be the best-fitting
such curve, i.e., we want the solution to (5).

To do this, we’ll use a piecewise-linear extension of µ̂|X . That is, having
sorted Xi into increasing order, we will define µ̂(x) everywhere on [X1, Xn] by
drawing line segments between successive points {Xi, µ̂(Xi)} and {Xi+1, µ̂(Xi+1)},
and extend the leftmost and rightmost segment to fill the intervals [0, X1] and
[Xn, 1].3 This gives us a piecewise-linear solution to (6). First, we’ll implement
it. Then we’ll verify that it is, in fact, a solution to (6).

Exercise 13 Briefly explain why piecewise-constant extension would not give
us a solution to (6). A sentence or a sketch should do.

Tip. Think about the examples from Section 1.

Solution 13 Piecewise-constant functions have steps and steps aren’t convex.

3.1.1 Implementation

Exercise 14 Write out a formula for the piecewise-linear curve µ̂(x) in terms
of µ̂(X1) . . . µ̂(Xn). Then implement it and add the curve µ̂(x) for x ∈ [0, 1] to

13

your plots from the Exercise 11.

Tip. For coding a piecewise linear function, try to modify the function predict.piecewise.constant
from the bounded variation lab.

Solution 14

µ̂(x) = µ̂(Xi) +
µ̂(Xi+1)− µ̂(Xi)

Xi+1 −Xi
(x−Xi)

for i = max {i ∈ 1 . . . n− 1 : Xi ≤ x} ∪ {1}.
(7)

Here’s a little explanation. The formula for µ̂(x) is the formula for the line
through {Xi, µ̂(Xi)} and {Xi+1, µ̂(Xi)} where Xi for i ∈ 1 . . . n−1 is the largest
Xi to the left of our query point x or, if there are none, X1. This last caveat
handles the case that x is to the left of X1; to handle the case that it’s to the
right of Xn, we’ve restricted the range of our search to 1 . . . n − 1 because if
we are to the right of Xn, we still want to use Xn−1 as our segment’s starting
point.

Here’s the implementation.

predict.piecewise.linear = function(model, newdata=data.frame(X=model$input$X)) {
Y = model$mu.hat; X=model$X; x=newdata$X; n = length(X)
Sort the X/muhat pairs so that X[1] <= X[2] <= ... <= X[n]
This is usually handled by the fitting function, but to keep my slow implementation simple, I didn't do it there.
o = order(X)
X = X[o]; Y = Y[o]

for each new data point x[k]
find the closest observed X[i[k]] left of x[k]
i.e., i[k] is the largest integer i for which X[i] <= x[k]
i = findInterval(newdata$X, X)
If there is no X[i] < x[k], findInterval sets i[k]=0
and we'll want to act as if we'd gotten 1 so we use the
line through (X[1], Y[1]) and (X[2], Y[2])
If that k is n, we'll want to act as if we'd gotten n-1 so we use
the line through (X[n-1], Y[n-1]) and (X[n], Y[n])
i[i==0] = 1; i[i==n] = n-1
make a prediction using the formula y - y0 = (x-x0) * slope
Y[i] + (x-X[i]) * (Y[i+1]-Y[i])/(X[i+1]-X[i])

}

predict.convexreg = predict.piecewise.linear

Here are the plots. The gray dots are observations (Xi, Yi), the black line is
µ(x), the blue dots are points {Xi, µ̂(Xi)} on the fitted curves, and the blue line
is µ̂(x).

14

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

square

1.0

1.5

2.0

2.5

0.00 0.25 0.50 0.75 1.00

exp

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

expminus

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

line

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

squareroot

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

cube

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00

step

−2.8

−2.4

−2.0

−1.6

−1.2

−0.8

0.00 0.25 0.50 0.75 1.00

minusexp

3.1.2 Verification

Exercise 15 Consider any pair x < x′. Prove that for any piecewise-linear
function m with breaks at X1 . . . Xn, the secant slope {m(x′)−m(x)}/(x′−x) be-
tween these points is a weighted average of the slopes {m(Xj+1)−m(Xj)}/(Xj+1−
Xj) of the segments that lie between them. Briefly explain why this implies that
our piecewise-linear extension of the solution to (6), µ̂ : R → R, solves the
convex regression problem (5).

Tips.

1. Break the ‘explain’ part of this down into feasibility and optimality, like
we did in the bounded variation regression lab.

2. You can get an inequality equivalent to (1) by subtracting m(a) from both
sides of (1) and dividing the result by λ(b − a). What does this have to

15

do with secant slopes?

Solution 15 The weighted average characterization. What we’re going
to do is break down the secant slope we’re interested in as a weighted average of
segment slopes. Let X1 . . . Xn be sorted in increasing order and i and i′ be chosen
as in (7) for x = x and x = x′ respectively, so x and x′ are between Xi and Xi+1

and Xi′ and Xi′+1 respectively.4 We’ll expand the secant slope’s numerator,
m(x′)−m(x), by adding zero written in a fancy way, using a telescoping sum:
0 = −m(Xi′) +

∑i′−1
j=i m(Xj+1) − m(Xj) + m(Xi). What we get is a sum of

differences in the piecewise-constant function m between points on the same
segment. And we’ll rewrite those differences as the product of the segment slope
and the distance between the points, i.e., using the identity m(b) − m(a) =
{b − a} × {m(b) −m(a)}/{b − a}. That gives us a weighted average of slopes.
Take a look.

m(x′)−m(x)

x′ − x
=

{m(x′)−m(Xi′)}+
{∑i′−1

j=i m(Xj+1)−m(Xj)
}
− {m(x)−m(Xi)}

x′ − x

=
m(x′)−m(Xi′)

x′ −Xi′

{
x′ −Xi′

x′ − x

}

+

i′−1∑
j=i

m(Xj+1)−m(Xj)

Xj+1 −Xj

{
Xj+1 −Xj

x′ − x

}

+
x−m(Xi)

x−Xi

{
x−Xi

x′ − x

}
=

m(Xi′+1)−m(Xi′)

Xi′+1 −Xi′

{
x′ −Xi′

x′ − x

}

+

i′−1∑
j=i

m(Xj+1)−m(Xj)

Xj+1 −Xj

{
Xj+1 −Xj

x′ − x

}

+
m(Xi+1)−m(Xi)

Xi+1 −Xi

{
x−Xi

x′ − x

}

What’s going on in the last equality? The red and blue slopes are the same in
each expression. Because µ̂ is piecewise-linear, the slope of µ̂ between Xi and x
is the same as the slope of µ̂ between Xi and Xi+1.

Now observe that the ratios in curly braces that multiply these slopes are
non-negative weights that sum to one, so our secant slope is a weighted average
of these segment slopes.
Feasibility. What does this have to do with the convexity of piecewise-linear
extensions of the solution to (6)? Let’s reformulate our definition of convexity
in terms of secant slopes. To do that, we’ll start with the definition (1), subtract
m(a) from both sides, and divide the result by the ’run’ {(1 − λ)a + λb} − a =

16

λ{b− a} of the secant on the right side.

(1− λ)m(a) + λm(b) ≥ m{(1− λ)a+ λb} ⇐⇒
λ{m(b)−m(a)} ≥ m{(1− λ)a+ λb} −m(a) ⇐⇒
m(b)−m(a)

b− a
≥ m{(1− λ)a+ λb} −m(a)

{(1− λ)a+ λb} − a

The result is an equivalent inequality that says that a curve is convex if and only
ifthe slope of the secant from a to b is at least as large as the slope of the secant
from a to xλ = {(1− λ)a+ λb} ∈ [a, b].

Here’s where the weighted average characterization comes in. Let’s compare
the secant slope from a to b with the secant slope from a to xλ.

m(b)−m(a)

b− a
=

m(Xi′+1)−m(Xi′)

Xi′+1 −Xi′

{
b−Xi′

b− a

}

+

i′−1∑
j=i

m(Xj+1)−m(Xj)

Xj+1 −Xj

{
Xj+1 −Xj

b− a

}

+
m(Xi+1)−m(Xi)

Xi+1 −Xi

{
a−Xi

b− a

}
m(xλ)−m(a)

xλ − a
=

m(Xi′′+1)−m(Xi′′)

Xi′′+1 −Xi′′

{
xλ −Xi′′

xλ − a

}

+

i′′−1∑
j=i

m(Xj+1)−m(Xj)

Xj+1 −Xj

{
Xj+1 −Xj

xλ − a

}

+
m(Xi+1)−m(Xi)

Xi+1 −Xi

{
a−Xi

xλ − a

}

For each term except the first in the a → xλ secant slope, we have a corresponding
term in the a to b secant slope with the same slope but a smaller weight. The
rest of the weight for the a → b secant slope is on segments that are either
that last segment on the a to xλ secant slope or segments to the right of it, i.e.
segments where, if m|X is convex, the slope is at least as large as on any segment
between a and xλ. So for each term in the a → xλ secant slope’s expansion,
we can think of the a → b secant slope as splitting the same weight between (i)
the same segment (ii) a segment of slope at least as large [one between xλ and
b]. It follows that the a → b secant slope is at least as large as the a → xλ

secant slope, i.e., that the piecewise-linear extension of a convex function on X
is convex on R. This tells us µ̂ is feasible.
Optimality. We argue by contradiction. If we had any convex function m :
R → R that had a smaller mean squared error than µ̂, then its restriction to the
sample, m|X , would be convex have a smaller mean squared error than µ̂|X , so
µ̂|X could not be a solution to (6).

17

3.2 Optimized Fitting
The downside of all this, from an implementation perspective, is that it involve
a lot of constraints. The number of constraints is proportional to n3. We can
fix this. Ultimately, what we’ll do is a lot like what we did to speed up mono-
tone regression: we found a set of local constraints that determined whether a
function was monotone. In particular, we found a way of establishing mono-
tonicity by looking at pairs of neighboring observations instead of all pairs of
observations.

3.3 Thinking locally about convexity
Let’s think about whether we can use a local properties to determine whether
a function is convex. By local property, I mean something you can check by
looking only at small pieces of the function rather than the whole function all at
once. For example, we know a function is increasing everywhere if it’s increasing
between n and n+1 for all integers n. This works more generally, if in place of
the intervals [n, n+1] we use any set of intervals that combine to cover the whole
real line. And because a differentiable function is convex if and only if it has
an increasing derivative, it follows that we can use this approach to determine
whether a differentiable function is convex.

Let’s try to generalize this. To start, it’s worth observing that using exactly
this approach won’t work.

Exercise 16 Describe a non-convex curve that is convex on the intervals [n, n+
1] for all integers n. Here, by convex on an interval, I mean that (1) holds for
all points a, b in that interval.

Tip. Look at the examples of non-convex curves above.

Solution 16

A step function. m(x) =

{
0 if x < 0

1 otherwise

We can fix this by looking at overlapping intervals that cover the real line, for
example, the intervals [n− 1, n+1]. By overlapping, I mean that the endpoints
of each interval are in the interior of (i.e. in but not endpoints of) some other
interval. Our ultimate goal will be to show that a function is convex if it’s
convex on overlapping intervals that cover the real line. But to get the concepts
down without messy arithmetic, let’s start with something easier.

Exercise 17 Show that if f(1) ≤ 1
2f(0) +

1
2f(2) and f(2) ≤ 1

2f(1) +
1
2f(3),

then f(1) ≤ 2
3f(0) +

1
3f(3). Continue with this approach to show that f(1) ≤

3
4f(0) +

1
4f(4) if, in addition, f(3) ≤ 1

2f(2) +
1
2f(4).

18

Solution 17 Substituting our second bound into our first gives us an inequality
involving only f(0), f(1), and f(3).

f(1) ≤ 1

2
f(0) +

1

2
f(2)

≤ 1

2
f(0) +

1

2

{
1

2
f(1) +

1

2
f(3)

}
=

1

2
f(0) +

1

4
f(1) +

1

4
f(3).

Subtracting the right side’s term 1
4f(1) from both sides, we get the bound 3

4f(1) ≤
1
2f(0) +

1
4f(3), and dividing both sides by 3/4 gives the claimed bound on f(1)

in terms of f(0) and f(3). If f(3) ≤ 1
2f(2) +

1
2f(4), we can derive the bound

f(3) ≤ 1
3f(1) +

2
3f(4) analogously from here:

f(3) ≤ 1

2
f(2) +

1

2
f(4) ≤ 1

2

{
1

2
f(1) +

1

2
f(3)

}
+

1

2
f(4).

Now let’s derive the claimed bound in terms of f(0) and f(4). The argument
is similar, combining these last two bounds.

f(1) ≤ 2

3
f(0) +

1

3
f(3)

≤ 2

3
f(0) +

1

3

{
1

3
f(1) +

2

3
f(4)

}
=

2

3
f(0) +

1

9
f(1) +

2

9
f(4).

Rearranging, we get f(1) ≤ 9
8{

2
3f(0) +

2
9f(4)} = 3

4f(0) +
1
4f(4) as claimed.

It looks like there’s a pattern here. If f(n+1) ≤ f(n)+f(n+2) for positive
integers n, then f(1) ≤ n−1

n f(0) + 1
nf(n). And because 1 = n−1

n · 0+ 1
n · n, this

is an instance of our convexity-defining inequality (1) for a = 0 and b = n. If
you’re familiar with proof by induction, try the next exercise.

Exercise 18 (Optional) Prove it! Use induction on n.

Solution 18 Suppose that, for n = N , we have the following bounds.

? f(1) ≤ n− 1

n
f(0) +

1

n
f(n) and f(n) ≤ 1

n
f(1) +

n− 1

n
f(n+ 1).

This is the case when N = 1. Then proceeding as in the last exercise,

f(1) ≤ n− 1

n
f(0) +

1

n
f(n) ≤ n− 1

n
f(0) +

1

n

{
1

n
f(1) +

n− 1

n
f(n+ 1)

}
.

By rearranging terms, we get

n2 − 1

n2
f(1) ≤ n− 1

n
f(0) +

n− 1

n2
f(n+ 1)

19

and then by dividing by n2−1
n2 = (n+1)(n−1)

n2 , we get

f(1) ≤ n(n− 1)

n2 − 1
f(0) +

n− 1

n2 − 1
f(n+ 1) =

n

n+ 1
f(0) +

1

n+ 1
f(n+ 1).

We can derive the bound f(n) ≤ 1
n+1f(1)+

n
n+1f(n+2) analogously from here.

f(n) ≤ 1

n
f(1) +

n− 1

n
f(n+ 1) ≤ 1

n

{
n− 1

n
f(0) +

1

n
f(n)

}
+

n− 1

n
f(n+ 1).

Thus, we have the bounds ? for n = N +1 as well. It follows, by induction, that
we have them for all n ≥ 2.

The general case. If, for some increasing sequence x1 < x2 < x3 < . . . < xn,
a function f is convex on the overlapping intervals [x1, x3], [x2, x4], …, [xn−2, xn],
then it’s convex on the interval [x1, xn]. This is what we’ll want when we’re
implementing our faster version of convex regression.

Exercise 19 (Optional) Prove it!

Tip. Start by showing that if f is convex on two intervals [a, b] and [b, c]
and satisfies f(b) ≤ (1 − λ′)f(a) + λ′f(c) for the value of λ′ ∈ [0, 1] for which
b = (1 − λ′)a + λ′c, then f is convex on [a, c]. To do this, it helps to observe
that we can write x ∈ [a, b] as (1− λ)a+ λb = (1− λ)a+ λ{(1− λ′)a+ λ′c} =
(1− λλ′)a+ λλ′c and do something analogous for x ∈ [b, c].

Tip. At some point in your argument, you’ll probably want to take a = x1,
b = x3, and c = x4. To show that f(x3) ≤ (1 − λ′)f(x1) + λ′f(x4) for λ′ such
that x3 = (1 − λ′)x1 + λ′x4, you’ll want to use the properties that f(x3) ≤
(1− λ′′)f(x2) + λ′′f(x4) for λ′′ such that x3 = (1− λ′′)x2 + λ′′x4 and f(x2) ≤
(1− λ′′′)f(x1) + λ′′′f(x3) for λ′′′ such that x2 = (1− λ′′′)x1 + λ′′′x3.

Tip. The basic idea here is the same as the last exercise, but it’s a bit messy.
At least the way I did it. If you do want to try it, I recommend that you skip it
on you first pass and come back to it when you’ve worked through the others.

Solution 19
First tip. Our premise is that f is convex on two intervals [a, b] and [b, c]
and satisfies f(b) ≤ (1 − λ′)f(a) + λ′f(c) for the value of λ′ ∈ [0, 1] for which
b = (1− λ′)a+ λ′c. We’ll show this implies f is convex on [a, c].

Any point in this interval is in at least one of the intervals [a, b] or [b, c],
so we’ll deal with each case. If x ∈ [a, b], we can write x = (1 − λ)a + λb for
λ ∈ [0, 1]. It follows, given our definition of λ′, that

x = (1− λ)a+ λ{(1− λ′)a+ λ′c} = (1− λλ′)a+ λλ′c.

20

And it follows from this and our premise that

f{(1− λλ′)a+ λλ′c} = f{(1− λ)a+ λb}
≤ (1− λ)f(a) + λf(b)

≤ (1− λ)f(a) + λ{(1− λ′)f(a) + λ′f(c)}
= (1− λλ′)f(a) + λλ′f(c).

This holds for all λ from 0 to 1 and therefore for all λ′′ = λλ′ ∈ [0, λ′].
If instead x ∈ [b, c], we can write x = (1− λ)b+ λc for λ ∈ [0, 1]. It follows,

given our definition of λ′, that

x = (1− λ){(1− λ′)a+ λ′c}+ λc = (1− λ− λ′ + λλ′)a+ (λ+ λ′ − λλ′)c.

And it follows from this and our premise that

f{(1− λ− λ′ + λλ′)a+ (λ+ λ′ − λλ′)c} = f{(1− λ)b+ λc}
≤ (1− λ)f(b) + λf(c)

≤ (1− λ){(1− λ′)f(a) + λ′f(c)}+ λf(c)

= (1− λ− λ′ + λλ′)f(a) + (λ+ λ′ − λλ′)f(c).

This holds for all λ from 0 to 1 and therefore for all λ′′ = λ+ λ′ − λλ′ ∈ [λ′, 1].
These two results together imply that f{(1− λ′′)a+ λ′′c} ≤ (1− λ′′)f(a) +

λ′′f(c) for all λ′′ ∈ [0, 1], i.e., that f is convex on [a, c].

Second tip. Using what we’ve just shown for a = x1, b = x2, and c = x4, we
see that because f is convex on [x1, x2] and [x2, x4], it’s convex on [x1, x4] if
f(x2) ≤ (1−λ′)f(x1)+λ′f(x4) for the value of λ′ for which x2 = (1−λ′)x1+λ′x4.
Let’s show that. Because f is convex on [x1, x3] and [x2, x4], we know that

f(x3) ≤ (1− λ′′)f(x2) + λ′′f(x4) for λ′′ such that x3 = (1− λ′′)x2 + λ′′x4

f(x2) ≤ (1− λ′′′)f(x1) + λ′′′f(x3) for λ′′′ such that x2 = (1− λ′′′)x1 + λ′′′x3.

We can eliminate x3 from out system of two ‘such that’ equations to get an
expression for x2 in terms of x1 and x4. Solving both (via addition/multiplation)
for λ′′′x3, we find that

λ′′′(1− λ′′)x2 + λ′′′λ′′x4 = λ′′′x3 = x2 + (λ′′′ − 1)x1

and therefore

x2 =
1− λ′′′

1− λ′′′(1− λ′′)
x1+

λ′′

1− λ′′′(1− λ′′)
x4 = (1−λ′)x1+λ′x4 for λ′ =

λ′′

1− λ′′′(1− λ′′)
.

Furthermore, as a consequence of convexity on [x1, x3] and [x2, x4],

f(x2) ≤ (1−λ′′′)f(x1)+λ′′′f(x3) ≤ (1−λ′′′)f(x1)+λ′′′{(1−λ′′)f(x2)+λ′′f(x4)}

21

and therefore, solving for f(x2), that

f(x2) ≤
1− λ′′′

1− λ′′′(1− λ′′)
f(x1) +

λ′′

1− λ′′′(1− λ′′)
= (1− λ′)f(x1) + λ′f(x4).

This is what was required to show convexity on [x1, x4].
Now we know that f is convex on each of the overlapping intervals [x1, x4],

[x3, x5], …. Let’s rename them. Letting x̃1 = x1 and x̃i = xi+1 for i ∈ 2 . . . n−1,
what we know is that f is convex on each of the intervals [x̃1, x̃3], [x̃2, x̃4],
And it follows that we can apply the argument above to this set of intervals to
show that f is convex on each of the intervals [x̃1, x̃4], [x̃3, x̃5], . . ., or using our
original names, on each of the intervals [x1, x5], [x4, x6], We can repeat this,
each time merging our first two intervals, until we ultimately get the result that
f is convex on the single interval [x1, xn].

3.4 Implementation
If our observations X1 . . . Xn are distinct and sorted in increasing order, then
I1 = [−∞, X2], I2 = [X1, X3], I3 = [X2, X4], . . . , In−1 = [Xn−2, Xn], In =
[Xn−1,∞] are overlapping intervals that cover the real line. A function m :
R → R is convex if and only if it’s convex on all of these intervals, i.e. if the
restriction m|Ij is convex for all intervals Ij . And a function m|X : X → R is
convex if and only the restriction to the observations Xi in each interval, i.e.
the intersection Xj = X ∩ Ij , is convex for all intervals Ij . What’s cool about
this is that there are either 2 or 3 observations in each of these sets Xj

5, so
— convexity on a set Xj being a property involving all triples in Xj — we get
either 0 or 1 for each of these sets X1 . . .Xn. That means that, in total, we get
no more than n constraints—in fact, we’ll get n− 2.

Exercise 20 Rewrite the optimization problem (6) more concretely in terms the
values of X1 . . . Xn and m(X1) . . .m(Xn), this time using the n − 2 ‘convexity
on Xj’ constraints rather than the ≈ n3 constraints we used in Exercise 10.

Then translate it into a a constrained optimization over a vector ~m, so that,
once you’ve solved for the optimal vector ~µ, you can express µ̂|X (X1) . . . µ̂|X (Xn)
in terms of the elements of ~µ (e.g. you might use µ̂|X (Xi) = ~µi if X1 . . . Xn are
distinct.) Try to do it so what you’ve written translates straightforwardly into
CVXR code.

Tip. If you want to keep things simple, go ahead and assume that X1 . . . Xn

take on n distinct values, just like we did at the beginning of the monotone
regression lab. If you want more generally applicable code, take a look at
how we use invert.unique in the monotone regression lab to handle duplicate
values.

Solution 20 See constraints in the code below.

22

Exercise 21 Write a new version of convexreg that uses the constraints from
Exercise 20. Then implement it and check that your solution agrees with the
one you got using the all-triples constraints in Exercise 11. No need to turn in
code, but you’ll want this faster implementation for this next part.

Repeat the fitting-and-plotting exercise from Exercise 11, but using sample
size n = 200 instead of n = 25 and plotting your solution’s piecewise-linear
extension µ̂ as a curve rather than the point predictions µ̂(X1) . . . µ̂(Xn). That
is, for the eight distributions described below Exercise 11, sample n = 200
observations (X1, Y1) . . . (Xn, Yn), use your new version of convexreg together
with your code from Exercise 14 to solve the convex regression problem (5). Each
time, plot the solution µ̂ (as a curve) on top of a scatter plot of the observations
(Xi, Yi). Turn in those eight plots, labeling each with the signal used, as your
solution to this exercise.

Solution 21 convexreg = function(X, Y, concave = FALSE, monotone = FALSE) {
Step 0.
We check that the inputs satisfy our assumptions.
stopifnot(length(X) == length(Y))
input = list(X=X, Y=Y)
n = length(X)
and find the unique elements of X and the inverse mapping
unique.X = invert.unique(X)

Step 1.
We tell CVXR we're thinking about a vector of unknowns m in R^p.
m = Variable(length(unique.X$elements))
and permute and duplicate these into a vector mX with n elements in correspondence with (X_1,Y_1)...(X_n,Y_n)
mX = m[unique.X$inverse]

Step 2.
We tell CVXR that we're interested in mean squared error.
mse = sum((Y - mX)^2 / n)

Step 3.
We specify our constraints.
Interpretation (rearrange): secant slopes are increasing
uX = X[unique.X$elements]
ii = 1:(n-2)
constraints =

list(((m[ii+1]-m[ii]) * (uX[ii+2]-uX[ii+1]) -
(m[ii+2]-m[ii+1]) * (uX[ii+1]-uX[ii])) * (-1)^concave <= 0)

If you want to fit monotone convex curves, you can add this constraint.
if(monotone) {

decreasing = monotone == 'decreasing'

23

constraints = c(constraints, (-1)^(decreasing) * diff(m) >= 0)
}
Step 4.
We ask CVXR to minimize mean squared error subject to our constraints.
And we ask for vector mu.hat that does it.
solved = solve(Problem(Minimize(mse), constraints))
mu.hat = solved$getValue(m)

Step 5: a little boilerplate to make it idiomatic R.
1. we record the unique levels of X and mu.hat, in correspondence and sorted in increasing order of X, in a list. We also record the input data.
2. we assign that list a class, so R knows predict should delegate to predict.convexreg
3. we return the list
model = list(X = X[unique.X$elements], mu.hat = mu.hat, input = input)
attr(model, "class") = "convexreg"
model

}

X = runif(20)
Y = X + rnorm(20)
model1 = convexreg(X,Y)
model2 = convexreg.slow(X,Y)
max(abs(predict(model1, newdata=data.frame(X=X)) - predict(model2, newdata=data.frame(X=X))))

[1] 5.578616e-06

0

1

2

0.00 0.25 0.50 0.75 1.00

square

1

2

3

0.00 0.25 0.50 0.75 1.00

exp

1

2

3

4

0.00 0.25 0.50 0.75 1.00

expminus

0

1

2

3

0.00 0.25 0.50 0.75 1.00

line

24

0.0

0.3

0.6

0.9

0.00 0.25 0.50 0.75 1.00

squareroot

0

1

2

0.00 0.25 0.50 0.75 1.00

cube

0

1

2

0.00 0.25 0.50 0.75 1.00

step

−3

−2

−1

0.00 0.25 0.50 0.75 1.00

minusexp

4 Rates of Convergence
Now we’ve got three nonparametric regression models: monotone curves, bounded
variation curves, and convex curves. To keep things simple, we’ll be working
with data sampled around one signal: µ(x) = x. That is, we’ll work with inde-
pendent and identically distributed observations (X1, Y1) . . . (Xn, Yn) where Xi

is drawn from uniform distribution on [0, 1] and Yi = µ(Xi) + εi for εi drawn
independently from the normal distribution with mean zero and standard devi-
ation σ = .5.

Tip. What we’re doing here is taking what we did at the end of the conver-
gence rates lab, simplifying it by using only one signal instead of four, and then
adding two new regression models. Use the lab’s solution as a starting point.

Exercise 22 Draw a sample of size N = 1600 from this distribution. To get
samples of sizes n = {25, 50, 100, 200, 400, 800, 1600}, use the first 25, 50, etc.
observations.

At all of these sample sizes, fit a line, an increasing curve, a bounded vari-
ation curve with budget B = 1, and a convex curve. Calculate sample MSE
‖µ̂−µ‖2L2(Pn) and population MSE ‖µ̂−µ‖2L2(P) for each. Repeat this ten times
and average the results to get estimates of expected sample MSE and expected
population MSE at each sample size n. Include plots of these as a function of n
as your solution.

Tip. This can be slow for larger samples. Try it out for samples of size 25 . . . 400
before adding in n = 800 and n = 1600.

Solution 22

Let’s try to summarize these plots by rates of convergence.

25

−0.05

0.00

0.05

0.10

0 500 1000 1500

model

bv

convex

lines

monotone

Figure 1: Expected sample MSE (thin lines) and a predictions (thick lines)
based on our rate estimates

Exercise 23 For each of your four regression models, use nls to fit a curve
of the form m(n) = αn−β to RMSE =

√
MSE where MSE is your estimate

of expected population mean squared error from the last exercise. Repeat for
expected sample mean squared error.

Plot the resulting predictions of MSE, m̂(n)2, on top of your actual MSE
curves from the the previous exercise to check their accuracy. Include these plots
and report these rates of convergence β̂ as your solution. Briefly comment on
what you see, too.

error.measure model a b
population bv 0.68 0.37
population convex 1.35 0.43
population lines 0.79 0.49
population monotone 0.79 0.36
sample bv 0.66 0.36
sample convex 0.73 0.38
sample lines 0.69 0.47
sample monotone 0.78 0.37

Solution 23 For both sample and population RMSE, the rates I’m estimating
are about n−1/2 for lines, n−1/3 for monotone and bounded variation, and n−2/5

for convex. Maybe that’s cheating a little, since those are the rates we’ll prove
later in the semester, but it is there in the table to some extent.

◦ The n−1/2 rate for lines is something you may have seen in a previous
class. If you haven’t, you’ve probably seen it for horizontal lines, since the

26

least squares prediction µ̂(x) in that model is the constant Ȳ which has
standard deviation σ/

√
n.

◦ Later in the semester, we’ll prove that the rates for monotone and bounded
variation regression are, in fact,n−1/3 or better. If we have time, we’ll
prove that the rate for convex regression is n−2/5 or better, too.

Our actual error curves do agree well with the predictions we get based on these
rates.

At most sample sizes the errors follow the pattern

monotone > bounded variation > convex > lines.

I’d expect some of those comparisons. In a sense, there are fewer lines than
monotone curves and fewer monotone curves than convex curves, even though
none of these models are contained in the others.

Why fewer convex curves than monotone curves? Think about what the
monotonicity constraint tells you: once your curve has hit a certain point, it
has to either stay flat or trend up. What the convexity constraint tells you is
that once your curve has hit a certain point, it has to keep trending up at least
as fast as it has been. The extra flexibility in the convex model relative to the
monotone one is that they can trend down before they trend up, but that isn’t
really enough to make up for the fact that you can’t ever flatten out.

Later on in the semester, we’ll see some theory that’ll tell us what’s going
on here pretty clearly.

27

	Convexity
	Differentiable Convex Functions
	Convex Sets
	Convex functions have convex epigraphs

	Convex Regression
	Fitting the Convex Regression Model
	Filling in the gaps
	Implementation
	Verification

	Optimized Fitting
	Thinking locally about convexity
	Implementation

	Rates of Convergence

