
Covering Numbers Homework

April 2, 2025

1 Introduction
This week, we’ll bound the gaussian width of neighborhoods in a bounded vari-
ation regression model.

M = {m : m(x) ∈ [0, 1] and ρTV (m) ≤ 1}

where ρTV (m) = sup
finite sequences
0=x0≤...≤xK=1

K∑
j=1

|xj − xj−1|.
(1)

To do this, we’ll use Dudley’s Integral Bound.

w(V) .
∫ ∞

0

√
log(Kε)dε if V has an ε-cover containing Kε curves. (2)

That means what we’ve got to do is find an ε-cover for a neighborhood Ms

in this model. In fact, we’ll do something a bit simpler. We’ll find an ε-cover
for the whole model and observe that (i) this is an ε-cover for neighborhoods
Ms of any radius s and (ii) if ε ≥ s then Ms has an ε-cover of size Kε = 1.
Because log(1) = 0, this implies a version of Dudley’s Integral Bound with Kε

corresponding to a cover of M itself and ε = s as an upper limit of integration.

w(Ms) .
∫ s

0

√
log(Kε) if M has an ε-cover containing Kε curves. (3)

In lecture this week, we showed that if our model has has ε-covers of size Kε .
1/ε, then the least squares estimator µ̂ converges at cube-root rate. That is,
‖µ̂− µ?‖L2(Pn) . n−1/3 with high probability.

Exercise 1 Explain why. This is just review.

Labs earlier in the semester gave us empirical evidence that µ̂ converges at
cube-root rate. Today, we’ll prove it by finding an ε-cover of size Kε . 1/ε.

As usual, we’ll assume our covariates X1 . . . Xn are in the unit interval [0, 1].
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2 A Simplified Problem
To keep things simple, we’ll start by finding a cover for the subset of increasing
curves in the bounded variation model (1). Because ρTV (m) = m(1) − m(0)
for increasing functions, this is just the set of increasing curves taking on values
m(x) ∈ [0, 1].

M = {increasing m : m(x) ∈ [0, 1]}. (4)
We’ll use the same basic approach we used for Lipschitz functions in lecture:
we’ll snap our curve m to a piecewise-constant curve πε(m) = mε where the
value mε(x) at the grid points x = 0, ε, 2ε, . . . , (1/ε) · ε = 1 is m(x) rounded to
the nearest multiple of ε. Visually, that means that if we’re drawing our curve
on a grid with ε × ε squares, we snap (up or down) to the nearest horizontal
grid line at each vertical grid line.

Exercise 2 To get used to the idea, draw the curve πε(m) for the four curves
m below. For each, do this for two values of ε: ε = 1/4, corresponding to the
red grid lines, and ε = 1/16, corresponding to the green grid lines.
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Now let’s get counting. This’ll be our main exercise.

Exercise 3 As a function of ε, bound the number of distinct curves πε(m) we
get by snapping the set of all increasing curves with m(x) ∈ [0, 1]. You may
restrict your attention to the case that ε = 1/K for an integer K.

Hint. Suppose we start with our pen hovering over the point (x, y) = (0, 0)
and draw a piecewise constant increasing curve terminating at (x, y) = (1, jε).
The distance our pen moves when we draw it is 1 + jε. And if we’re drawing
a ‘snapped curve’ πε(m), we move our pen only along the grid lines, taking
K = 1/ε steps of length ε to the right and j steps of length ε upward. Each way
of choosing j of these K + j steps to move upward— or equivalently K of these
K + j steps to move rightward—yields a different curve πε(m). And there are
K + j choose j = (K + j)! / (K! j!) such curves. The cover {π(m) : m ∈ M}
contains each of these curves for every gridded endpoint jε with j ∈ 0 . . .K.
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Hint. (K + j)! / (K! j!) = (K + 1) . . . (K + j) / j! ≤ (2K)j / j!

Hint. Think about the Taylor series for ex at x = 2K.

3 The Full Model
To count all the curves πε(m) for m in our bounded variation regression model
M (1), we observe that we can write each such curve m ∈ M as the difference
m+−m− of two increasing curves in M. Where m increases, m+ increases with
it and −m− remains constant; where m decreases, −m− decreases with it and
m+ remains constant. This means we can come up with an ε-cover for all the
curves in our model M using an ε-cover for the increasing ones.

Exercise 4 Describe an ε-cover, or equivalently an ε-snapping map πε, for the
bounded variation regression model M (1). State an upper bound on the number
of curves it contains. Does your result imply an n−1/3 rate of convergence?
Why or why not?

Hint. Don’t get too fancy. If π is an ε-snapping map on the increasing func-
tions in M, is π(m) = π(m+) + π(m−) an ε-snapping map on the whole model
M? How many distinct curves do we get if we snap m ∈ M like this?

4 Generalizing our Results
The monotone and bounded variation models we’ve been working with in this
homework aren’t quite the ones we’ve been using throughout the semester.
We’ve imposed the additional constraint that m(x) ∈ [0, 1] for all x. We need
these to get covering number bounds on the full model M. After all, the set
of all increasing curves and the set of curves with ρTV (m) ≤ 1 both contain
the constant curves m(x) = α for all α ∈ R, and we can’t find an ε-cover of
any finite size for those contant curves alone. However, neighborhoods in these
models do not have this problem. Let’s see what we can do.

We’ll start by bounding the gaussian width of a neighborhood of zero, which
is what we’d need to establish a rate of convergence in the admittedly implau-
sible event that µ(x) = 0.

Exercise 5 Describe an ε-cover for a neighborhood of zero, M0
s = {m ∈ M :

‖m‖L2(Pn) ≤ s} in (i) the set M of all increasing curves and (ii) the set M
of all curves with ρTV (m) ≤ 1. State an upper bound on the number of curves
each contains. If it were true that µ(x) = 0, would your result imply an n−1/3

rate of convergence? Why or why not?
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Hint. Make very small changes to your answers to Exercises 3 and 4.

We’ve shown earlier in the semester that for models defined as balls in semi-
norms, like our bounded variation model M = {m : ρTV (m) ≤ 1}, the width
of a neighborhood of an arbitrary point µ? ∈ M can’t be much bigger than the
width of a neighborhood of zero. So Exercise 5 is really all you need to need to
establish a rate of convergence irrespective of what µ is. But we have no such
result for the monotone regression model. Let’s approach this more directly.

Exercise 6 Optional. Describe an ε-cover for a neighborhood of an arbitary
curve µ? ∈ M, Ms = {m ∈ M : ‖m − µ?‖L2(Pn) ≤ s}, in the set M of all
increasing curves. Does your result imply an n−1/3 rate of convergence? Why
or why not?
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