Gaussian Sobolev Spaces and Polynomial Approximation

March 4, 2025

So far, we've worked with the Sobolev model on even 2-periodic functions.

$$\mathcal{M} = \{ \text{even 2-periodic } m(x) : \rho(m) \le B \} \quad \text{for} \quad \rho(m) = \left\| \frac{d}{dx} m \right\|_{L_2} \tag{1}$$

Because curves on [0, 1] are in one-to-one correspondence with even periodic functions,¹ this is a natural model for functions on the unit interval [0, 1]. Because $||u||_{L_2}^2 = \operatorname{E} u(X)^2$ for X uniformly distribution on [0, 1], our constraint requires |m'(X)| to be small most of the time for X with this distribution.

In this homework, we'll see what happens when we impose the same constraint for X with another distribution: the standard normal distribution. This is a bit more natural if our covariates X_i tend to be near zero but aren't bounded. And it saves us a little trouble, as we'll be modeling functions on all of \mathbb{R} directly, so we won't need to think about periodic extension. Here's the model.

$$\mathcal{M} = \left\{ m : \lim_{x \to \pm \infty} m(x)^2 f(x) = 0 \text{ and } \rho(m) \le B \right\}$$

for $\rho(m) = \sqrt{\int_{-\infty}^{+\infty} \left\{ \frac{d}{dx} m(x) \right\}^2 f(x) dx}$ (2)

where $f(x) = (1/\sqrt{2\pi})e^{-x^2/2}$ is the probability density for the standard normal distribution. This is a space of smooth functions m from $\mathbb{R} \to \mathbb{R}$ that don't grow too fast as x approaches $\pm \infty$.

We'll find a Fourier-series characterization of this model, show that the basis functions ϕ_0, ϕ_1, \ldots involved in this characterization are the polynomials of order $0, 1, 2, \ldots$, and find a uniform bound on the error we get when we use polynomials of order N-1 to approximate the functions in this model. We can use this bound to implement an approximate least squares estimator using this model using finite-dimensional approximation, much like we did with the Sobolev model (1). But, least squares in polynomial models being fairly popular, it's also useful interpretively. E.g., when somebody says fitting a cubic polynomial model is 'good enough', we can look at the approximation error we get using cubic polynomials to approximate possible signals μ in the model \mathcal{M} to think about whether we agree.

Throughout, we'll use the gaussian inner product and associated norm.

$$\langle u, v \rangle = \int_{-\infty}^{+\infty} u(x)v(x)f(x)dx \quad \text{and} \quad \|v\| = \sqrt{\langle v, v \rangle} \quad \text{for} \quad f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2} \tag{3}$$

If we prefer, we can think of these in terms of expectations involving a standard normal random variable.

$$\langle u, v \rangle = \operatorname{E} u(X)v(X) \quad \text{and} \quad \|v\| = \sqrt{\operatorname{E} v(X)^2} \quad \text{for} \quad X \sim N(0, 1).$$
(4)

1 Fourier Series

Our first step is characterizing the adjoint of the differential operator $\frac{d}{dx}$. This isn't $-\frac{d}{dx}$, as it was when we were talking about the model (1), because we're working with a different vector space of functions with a different inner product.

Exercise 1 Show that if we're using the gaussian inner product, the adjoint of the first derivative operator $Lv(x) = \frac{d}{dx}v(x)$ is $L^*u(x) = xu(x) - \frac{d}{dx}u(x)$. *Hint.* You can prove that the adjoint L^* satisfies $\langle L^*u, v \rangle = \langle u, Lv \rangle$

Hint. You can prove that the adjoint L^* satisfies $\langle L^*u, v \rangle = \langle u, Lv \rangle$ using integration by parts on $\int \{f(x)u(x)\}v'(x)dx$. Why is it important that the functions and their derivatives don't grow too fast as $x \to \pm \infty$? How does that relate to the periodicity restriction we use with (1)?

Using this, we can characterize the *self-adjoint operator* L^*L . One advantage of this alternate definition is that it allows us to define a *family of models*, \mathcal{M}^p for positive integers p, based on powers of the operator.²

$$\mathcal{M}^{p} = \left\{ m : \lim_{x \to \pm \infty} m(x)^{2} \phi(x) = 0 \text{ and } \rho_{p}(m) \leq B \right\}$$

for $\rho_{p}(m) = \sqrt{\langle (L^{*}L)^{p} \ m, \ m \rangle}$ (5)

Exercise 2 What is the self-adjoint operator L^*L in this case? In terms of it, write an alternate definition of the seminorm ρ in (2). Something like the definition of ρ_p in from (5) for p = 1, but more concrete. Then, if you like, write one for the seminorm ρ_2 from (5) too.

Having this definition (5) also reduces Fourier series representation to the calculation of eigenvalues and eigenvectors of L^*L . We'll show that these eigenvectors are polynomials and work out an efficient way of computing them.

We have at least two polynomial eigenvectors: the functions 1 and x are eigenvectors with corresponding eigenvalues 0 and 1. You can check. To find more, we'll start by working out a recursive formula.

Exercise 3 Show that if ϕ is an eigenvector of L^*L with eigenvalue λ , then ϕ' is an eigenvector of L^*L with eigenvalue $\lambda - 1$.

Hint. Differentiate both sides of the identity $L^*L \phi(x) = \lambda \phi(x)$.

Let's interpret this. Suppose that L^*L has an eigenvector ϕ_j that is a polynomial of order j with corresponding eigenvalue is λ_j . Because the derivative of a *j*th order polynomial is a (j-1)th order polynomial, Exercise 3 would imply that we would also have an eigenvector ϕ'_j that's a polynomial of order j-1 with corresponding eigenvalue $\lambda_j - 1$. And therefore, applying the same reasoning to ϕ'_j , that we'd also have an eigenvector ϕ''_j with eigenvalue $\lambda_j - 2$, etc. This would be consistent with what we know already: we do have polynomial eigenvectors ϕ_0 and ϕ_1 of orders 0 and 1 and the corresponding eigenvalues $\lambda_0 = 0$ and $\lambda_1 = 1$ do satisfy the recursive formula $\lambda_{j-1} = \lambda_j - 1$. But none of that tells us that our premise is true, i.e. that L^*L actually does have an eigenvector ϕ_j that is a polynomial of order j.

What we do know is that it has eigenvectors ϕ_j that are polynomials of order j, with corresponding eigenvalues $\lambda_j = j$, for j < 2. If we want to show this is true for all j, we need to go 'up' from j = 0 to j = 1 to j = 2 etc. instead of going 'down' from j to j - 1 to j - 2 etc. To *increase* the order of a polynomial eigenvector $\phi_{j-1}(x)$, we can multiply it by x. The result, $x\phi_j(x)$, won't be an eigenvector. But it's a place to start. What we'll do is write out our j + 1st eigenvector as a 'corrected version' of this guess, i.e. $\phi_{j+1}(x) = x\phi_j(x) - u(x)$, then work out what 'correction' u(x) we need to use to make it an eigenvector.

Exercise 4 Suppose that ϕ_{j-1} satisfies $L^*L\phi_{j-1}(x) = (\lambda_j - 1)\phi_{j-1}(x)$. Find a function $u_j(x)$ so that $\phi_j(x) = x\phi_{j-1}(x) - u_j(x)$ satisfies $L^*L \phi_j(x) = \lambda_j\phi_j(x)$.

Tip. You could solve for $u_j(x)$ so that $L^*L\{x\phi_{j-1}(x)-u_j(x)\} = \lambda_j\{x\phi_j(x)-u_j(x)\}$, but that's working harder than you need to. Exercise 3 suggests an easier approach. We know that if ϕ_j is an eigenvector, then so is ϕ'_j and therefore $\frac{1}{c}\phi'_j$ for any constant c. So we can try to find $u_j(x)$ by solving the simpler differential equation $\phi'_j = \{x\phi_{j-1}(x) - u_j(x)\}' = c\phi_{j-1}(x)$, then check that it satisfies $L^*L\{x\phi_{j-1}(x) - u_j(x)\} = \lambda_j\{x\phi_{j-1}(x) - u_j(x)\}$.

Tip. To find $u_j(x)$, compare $c\phi_{j-1}(x) = \{x\phi_{j-1}(x) - u_j(x)\}'$ to $(\lambda_j - 1)\phi_{j-1}(x) = L^*L\phi_{j-1}(x) = x\phi'_{j-1}(x) - \phi''_{j-1}(x)$.

What does this tell us about whether the eigenvectors of L^*L are polynomials? If ϕ_{j-1} and u_j are both polynomials, then so is $\phi_j = x\phi_{j-1} - u_j$. Using the 'base case' that L^*L has polynomial eigenvectors ϕ_j of order j and corresponding eigenvalues $\lambda_j = j$ for all natural numbers j < K when K = 2, we can prove by induction on K that the same is true for all natural numbers j.

Because L^*L is a self-adjoint linear operator, we know that these polynomials ϕ_j are orthogonal. In fact, we know that $\phi_0 \dots \phi_j$ is an orthogonal basis for the space of all polynomials of order j, i.e., for the vector space spanned by the vectors $1, x, x^2, \dots, x^j$. Why? Because it's a set of j + 1 orthogonal, and therefore linearly independent, vectors in a j + 1 dimensional vector space. If we're willing to buy the premise that we can write every function in our model as

a power series, i.e. that our model is spanned by the basis functions $1, x, x^2, \ldots$, it follows that it's also spanned by the eigenvectors $\phi_0, \phi_1, \phi_2, \ldots$

That means we've got an orthogonal basis we can use to write a Fourier series representation of the model. However, when we do that, we will want to scale our eigenvectors so that $\|\phi_i\| = 1.^1$

Exercise 5 Suppose that ϕ_j with $\|\phi_j\| = 1$ is an eigenvector of L^*L with eigenvalue $\lambda_j = j$ for $j \ge 1$. Show that $\|\phi_j\| = \sqrt{\lambda_j}$, so Exercise 3 implies that $\phi_{j-1} = \phi'_j / \sqrt{j}$ is an eigenvector of L^*L with corresponding eigenvalue $\lambda_{j-1} = j - 1 \text{ and norm } \|\phi_{j-1}\| = 1.$ **Hint.** $\|\phi'\|^2 = \langle L\phi', L\phi' \rangle = \langle L^*L\phi, \phi \rangle \text{ for } L = \frac{d}{dx}.$

We'll also want an efficient way of computing these eigenvectors. Something like the recursive formula in Exercise 4, which we can use to compute the eigenvector ϕ_i from eigenvectors $\phi_0 \dots \phi_{i-1}$, but ideally without needing to compute any derivatives.

Exercise 6 Suppose that, for all natural numbers j, ϕ_j with $\|\phi_j\| = 1$ is an eigenvector of $L^{\star}L$ with eigenvalue $\lambda_j = j$. Furthermore, suppose that this sequence satisfies $\phi_{j-1} = \phi'_j/\sqrt{j}$ for all $j \ge 1$. Prove that $\phi_j = x\phi_{j-1}/\sqrt{j}$ $\phi_{j-2}\sqrt{(j-1)/j} \text{ for } j \ge 2.$

Hint. $j\phi_j = x\phi'_j - \phi''_j$. How are ϕ'_j and ϕ''_j related to ϕ_{j-1} and ϕ_{j-2} ?

2 Polynomial Approximation

Given the Fourier series representation of the model, we can use results from the Sobolev models homework to get a uniform bound on the error we get using polynomials of order N-1 to approximate functions in the model.

Exercise 7 What is the maximal error of polynomial approximations of order N-1 for functions m in \mathcal{M}^p , i.e. what is

$$\max_{m \in \mathcal{M}^p} \min_{a_0 \dots a_{N-1}} \left\| m - \sum_{j=0}^{N-1} a_j x^j \right\| \quad for \quad \|u\| = \sqrt{\int_{-\infty}^{+\infty} u(x)^2 \phi(x) dx}?$$

If we want to ensure this is no more than ϵ , how large do we need to make N?

With reference to the Sobolev models homework, briefly explain how you know that you cannot do better than this using a different N-dimensional basis. A sentence should do.

¹Often, e.g. in this Wikipedia article, the eigenvectors are 'normalized' so the coefficient on x^j in the polynomial ϕ_j is 1. This is a different thing.