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So far, we’ve worked with the Sobolev model on even 2-periodic functions.

M = {even 2-periodic m(x) : ρ(m) ≤ B} for ρ(m) =

∥∥∥∥ d

dx
m

∥∥∥∥
L2

(1)

Because curves on [0, 1] are in one-to-one correspondence with even periodic
functions,1 this is a natural model for functions on the unit interval [0, 1]. Be-
cause ‖u‖2L2

= Eu(X)2 for X uniformly distribution on [0, 1], our constraint
requires |m′(X)| to be small most of the time for X with this distribution.

In this homework, we’ll see what happens when we impose the same con-
straint for X with another distribution: the standard normal distribution. This
is a bit more natural if our covariates Xi tend to be near zero but aren’t bounded.
And it saves us a little trouble, as we’ll be modeling functions on all of R directly,
so we won’t need to think about periodic extension. Here’s the model.

M =

{
m : lim

x→±∞
m(x)2f(x) = 0 and ρ(m) ≤ B

}

for ρ(m) =

√∫ +∞

−∞

{
d

dx
m(x)

}2

f(x) dx

(2)

where f(x) = (1/
√
2π)e−x2/2 is the probability density for the standard normal

distribution. This is a space of smooth functions m from R → R that don’t
grow too fast as x approaches ±∞.

We’ll find a Fourier-series characterization of this model, show that the basis
functions φ0, φ1, . . . involved in this characterization are the polynomials of order
0, 1, 2, . . ., and find a uniform bound on the error we get when we use polynomials
of order N−1 to approximate the functions in this model. We can use this bound
to implement an approximate least squares estimator using this model using
finite-dimensional approximation, much like we did with the Sobolev model
(1). But, least squares in polynomial models being fairly popular, it’s also
useful interpretively. E.g., when somebody says fitting a cubic polynomial model
is ‘good enough’, we can look at the approximation error we get using cubic
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polynomials to approximate possible signals µ in the model M to think about
whether we agree.

Throughout, we’ll use the gaussian inner product and associated norm.

〈u, v〉 =
∫ +∞

−∞
u(x)v(x)f(x)dx and ‖v‖ =

√
〈v, v〉 for f(x) =

1√
2π

e−x2/2

(3)
If we prefer, we can think of these in terms of expectations involving a standard
normal random variable.

〈u, v〉 = Eu(X)v(X) and ‖v‖ =
√
E v(X)2 for X ∼ N(0, 1). (4)

1 Fourier Series
Our first step is characterizing the adjoint of the differential operator d

dx . This
isn’t − d

dx , as it was when we were talking about the model (1), because we’re
working with a different vector space of functions with a different inner product.

Exercise 1 Show that if we’re using the gaussian inner product, the adjoint of
the first derivative operator Lv(x) = d

dxv(x) is L?u(x) = xu(x)− d
dxu(x).

Hint. You can prove that the adjoint L? satisfies 〈L?u, v〉 = 〈u, Lv〉
using integration by parts on

∫
{f(x)u(x)}v′(x)dx. Why is it important that the

functions and their derivatives don’t grow too fast as x → ±∞? How does that
relate to the periodicity restriction we use with (1)?

Using this, we can characterize the self-adjoint operator L?L. One advantage
of this alternate definition is that it allows us to define a family of models, Mp

for positive integers p, based on powers of the operator.2

Mp =

{
m : lim

x→±∞
m(x)2φ(x) = 0 and ρp(m) ≤ B

}
for ρp(m) =

√
〈(L?L)p m, m〉

(5)

Exercise 2 What is the self-adjoint operator L?L in this case? In terms of
it, write an alternate definition of the seminorm ρ in (2). Something like the
definition of ρp in from (5) for p = 1, but more concrete. Then, if you like,
write one for the seminorm ρ2 from (5) too.

Having this definition (5) also reduces Fourier series representation to the
calculation of eigenvalues and eigenvectors of L?L. We’ll show that these eigen-
vectors are polynomials and work out an efficient way of computing them.

We have at least two polynomial eigenvectors: the functions 1 and x are
eigenvectors with corresponding eigenvalues 0 and 1. You can check. To find
more, we’ll start by working out a recursive formula.
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Exercise 3 Show that if φ is an eigenvector of L?L with eigenvalue λ, then φ′

is an eigenvector of L?L with eigenvalue λ− 1.
Hint. Differentiate both sides of the identity L?L φ(x) = λφ(x).

Let’s interpret this. Suppose that L?L has an eigenvector φj that is a poly-
nomial of order j with corresponding eigenvalue is λj . Because the derivative of
a jth order polynomial is a (j − 1)th order polynomial, Exercise 3 would imply
that we would also have an eigenvector φ′

j that’s a polynomial of order j−1 with
corresponding eigenvalue λj − 1. And therefore, applying the same reasoning
to φ′

j , that we’d also have an eigenvector φ′′
j with eigenvalue λj − 2, etc. This

would be consistent with what we know already: we do have polynomial eigen-
vectors φ0 and φ1 of orders 0 and 1 and the corresponding eigenvalues λ0 = 0
and λ1 = 1 do satisfy the recursive formula λj−1 = λj − 1. But none of that
tells us that our premise is true, i.e. that L?L actually does have an eigenvector
φj that is a polynomial of order j.

What we do know is that it has eigenvectors φj that are polynomials of order
j, with corresponding eigenvalues λj = j, for j < 2. If we want to show this is
true for all j, we need to go ‘up’ from j = 0 to j = 1 to j = 2 etc. instead of
going ‘down’ from j to j − 1 to j − 2 etc. To increase the order of a polynomial
eigenvector φj−1(x), we can multiply it by x. The result, xφj(x), won’t be an
eigenvector. But it’s a place to start. What we’ll do is write out our j + 1st
eigenvector as a ‘corrected version’ of this guess, i.e. φj+1(x) = xφj(x)− u(x),
then work out what ‘correction’ u(x) we need to use to make it an eigenvector.

Exercise 4 Suppose that φj−1 satisfies L?Lφj−1(x) = (λj − 1)φj−1(x). Find a
function uj(x) so that φj(x) = xφj−1(x)−uj(x) satisfies L?L φj(x) = λjφj(x).

Tip. You could solve for uj(x) so that L?L{xφj−1(x)−uj(x)} = λj{xφj(x)−
uj(x)}, but that’s working harder than you need to. Exercise 3 suggests an easier
approach. We know that if φj is an eigenvector, then so is φ′

j and therefore
1
cφ

′
j for any constant c. So we can try to find uj(x) by solving the simpler

differential equation φ′
j = {xφj−1(x) − uj(x)}′ = cφj−1(x), then check that it

satisfies L?L{xφj−1(x)− uj(x)} = λj{xφj−1(x)− uj(x)}.
Tip. To find uj(x), compare cφj−1(x) = {xφj−1(x) − uj(x)}′ to (λj −

1)φj−1(x) = L?Lφj−1(x) = xφ′
j−1(x)− φ′′

j−1(x).

What does this tell us about whether the eigenvectors of L?L are polynomi-
als? If φj−1 and uj are both polynomials, then so is φj = xφj−1 − uj . Using
the ‘base case’ that L?L has polynomial eigenvectors φj of order j and corre-
sponding eigenvalues λj = j for all natural numbers j < K when K = 2, we
can prove by induction on K that the same is true for all natural numbers j.

Because L?L is a self-adjoint linear operator, we know that these polynomials
φj are orthogonal. In fact, we know that φ0 . . . φj is an orthogonal basis for
the space of all polynomials of order j, i.e., for the vector space spanned by
the vectors 1, x, x2, . . . , xj . Why? Because it’s a set of j + 1 orthogonal, and
therefore linearly independent, vectors in a j + 1 dimensional vector space. If
we’re willing to buy the premise that we can write every function in our model as
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a power series, i.e. that our model is spanned by the basis functions 1, x, x2, . . .,
it follows that it’s also spanned by the eigenvectors φ0, φ1, φ2, . . ..

That means we’ve got an orthogonal basis we can use to write a Fourier
series representation of the model. However, when we do that, we will want to
scale our eigenvectors so that ‖φj‖ = 1.1

Exercise 5 Suppose that φj with ‖φj‖ = 1 is an eigenvector of L?L with
eigenvalue λj = j for j ≥ 1. Show that ‖φ′

j‖ =
√

λj, so Exercise 3 implies
that φj−1 = φ′

j/
√
j is an eigenvector of L?L with corresponding eigenvalue

λj−1 = j − 1 and norm ‖φj−1‖ = 1.
Hint. ‖φ′‖2 = 〈Lφ′, Lφ′〉 = 〈L?Lφ, φ〉 for L = d

dx .

We’ll also want an efficient way of computing these eigenvectors. Something
like the recursive formula in Exercise 4, which we can use to compute the eigen-
vector φj from eigenvectors φ0 . . . φj−1, but ideally without needing to compute
any derivatives.

Exercise 6 Suppose that, for all natural numbers j, φj with ‖φj‖ = 1 is an
eigenvector of L?L with eigenvalue λj = j. Furthermore, suppose that this
sequence satisfies φj−1 = φ′

j/
√
j for all j ≥ 1. Prove that φj = xφj−1/

√
j −

φj−2

√
(j − 1)/j for j ≥ 2.

Hint. jφj = xφ′
j − φ′′

j . How are φ′
j and φ′′

j related to φj−1 and φj−2?

2 Polynomial Approximation
Given the Fourier series representation of the model, we can use results from
the Sobolev models homework to get a uniform bound on the error we get using
polynomials of order N − 1 to approximate functions in the model.

Exercise 7 What is the maximal error of polynomial approximations of order
N − 1 for functions m in Mp, i.e. what is

max
m∈Mp

min
a0...aN−1

∥∥∥∥∥∥m−
N−1∑
j=0

ajx
j

∥∥∥∥∥∥ for ‖u‖ =

√∫ +∞

−∞
u(x)2φ(x)dx?

If we want to ensure this is no more than ε, how large do we need to make N?
With reference to the Sobolev models homework, briefly explain how you

know that you cannot do better than this using a different N -dimensional basis.
A sentence should do.

1Often, e.g. in this Wikipedia article, the eigenvectors are ‘normalized’ so the coefficient
on xj in the polynomial φj is 1. This is a different thing.
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