
Least Squares and Gaussian Width

April 15, 2025

1 Introduction
1.1 Review
In this week’s lectures, we proved a bound on the error of the least squares
estimator µ̂ in a convex model.

µ̂ = argmin
m∈M

1

n

n∑
i=1

{Yi −m(Xi)}2 where M is a convex set . (1)

To keep things simple, we focused on a stylized gaussian-noise model.

Yi = µ(Xi) + εi where εi
iid∼ N(0, σ2).

And we proved that the following high probability error bound in terms of the
gaussian width of a centered neighborhood of µ.

‖µ̂− µ‖L2(Pn) < s w.p. 1− δ if s2

2σ
≥ w(M◦

s − µ) + s

√
2{1 + 2 log(2n)}

δn

when µ ∈ M.
(2)

Here M◦
s = {m− µ : m ∈ M and ‖m− µ‖ = s}. Futhermore, we showed that

even if µ is not in the model, we have a bound like this on the distance between
our estimator (µ̂) and our model’s best approximation to the signal (µ?).

‖µ̂− µ?‖L2(Pn) < s w.p. 1− δ if s2

2σ
≥ w(M◦

s − µ) + s

√
2{1 + 2 log(2n)}

δn

for µ? = argmin
m∈M

‖m− µ‖L2(Pn).

(3)
Here M◦

s = {m − µ? : m ∈ M and ‖m − µ?‖ = s}. This is a generalization of
the previous bound. When µ ∈ M, µ? = µ and (3) is equivalent to (2).

I also claimed (without proof) that this implies the following bound. The
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advantage is that the inequality characterizing s is a bit simpler.

‖µ̂− µ?‖L2(Pn) < s+ 2σ

√
2{1 + 2 log(2n)}

δn
w.p. 1− δ if s2

2σ
≥ w(Ms − µ)

for µ? = argmin
m∈M

‖m− µ‖L2(Pn).

(4)
Here Ms = {m− µ? : m ∈ M and ‖m− µ?‖ ≤ s}.

1.2 Assignment Summary
In this assignment, we’ll take a few steps toward getting concrete, meaningful
error bounds. Because it’s unrealistic to expect real data to look exactly like
signal plus gaussian noise, we’ll derive a more meaningful version of (3) (and
consequently (4)) in Section 3: a bound that holds when ε1 . . . εn are indepen-
dent with mean zero, but don’t have to be gaussian or even all have the same
distribution. And because our error bound (3) is a little too abstract to make
sense directly, we’ll bound the gaussian width of neighborhoods Ms − µ? in a
few models and use the result to derive concrete model-specific error bounds.
To prepare for all that, we’ll start by proving a few properties of gaussian width.
And, for good measure, we’ll use them to derive our simplified error bound (4)
from the one we proved in lecture (3).
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2 Properties of Gaussian Width
In this section, we’ll prove a few properties of gaussian width.

w(V) = Emax
v∈V

〈g, v〉 for gi
iid∼ N(0, 1).

2.1 Basic Properties
◦ It’s increasing. It’s a maximum over the set V, so it gets bigger if V does.

w(V) ≤ w(V +) if V ⊆ V+

◦ It’s homogeneous. If we scale the vectors in V, we scale its width.

w(αV) = αw(V) where αV := {αv : v ∈ V} for α ≥ 0.

◦ It’s translation invariant. It doesn’t care about how we center our vectors.

w(V + x) = w(V ) for V + x := {v + x : v ∈ V}.

Exercise 1 Prove that gaussian width w(V) has these three properties.

Solution 1 1. For any vector g ∈ Rn, if V ⊆ V+,

max
v∈V

〈g, v〉 ≤ max
v∈V+

〈g, v〉.

Every value ‘considered’ in the first maximum is also considered in the
second.

2. For any vector g ∈ Rn,

max
v∈αV

〈g, v〉 = max
v∈V

α〈g, v〉 = αmax
v∈V

〈g, v〉.

The first equality follows from linearity of the inner product and the second
because, if α ≥ 0, maxx αf(x) = αmaxx f(x) for any function f . The
situtation is reversed if α < 0: we get α times the minimum of the function
f .

3. For any vector g ∈ Rn,

max
v∈V+x

〈g, v〉 = max
v∈V

〈g, v〉+〈g, x〉 and therefore E max
v∈V+x

〈g, v〉 = Emax
v∈V

〈g, v〉+E〈g, x〉
=0

.

It’s about linearity of expectations and inner products.

Notation. Often, because it’s a bit more compact, we’ll write s2 ≥ 2σw(M◦
s)

instead of s2 ≥ 2σw(M◦
s − µ?) in bounds like (3).

Exercise 2 Explain why it makes no difference whether we write w(M◦
s − µ?)

or w(M◦
s). A sentence should do.

Solution 2 Gaussian width is translation invariant.
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2.2 Sublinearity
Exercise 3 Let M be a convex set, µ? be a point in M, and ρ be a seminorm
defined on its elements. Prove that, for a neighborhood Ms = {m− µ? ∈ M :
ρ(m−µ?) ≤ s} of µ?, f(s) = w(Ms −µ?) is a sublinear function of s. That is,
prove that f(s)/s, a function on the positive real numbers, is (non-necessarily-
strictly) decreasing.

Tips.

1. f(s)/s is decreasing if f(s)/s ≥ f(t)/t [or equivalently f(s) ≥ (s/t)f(t)]
whenever s ≤ t. Is (s/t)f(t) the gaussian width of some set? If so, what
set? And how is it related to Ms − µ?? Use the properties of gaussian
width you proved in Exercise 1.

2. It’s important that M is a convex set containing µ?. Why? If m is in
M, then so is mλ = µ? + λ(m− µ?) for any λ ∈ [0, 1]. Or equivalently, if
m− µ? is in M− µ?, so is mt − µ? = λ(m− µ?).1

Solution 3 We’ll use the increasingness and homogeneity of gaussian width to
show that (s/t)f(t) ≤ f(s) if (s/t)(Mt − µ?) ⊆ Ms − µ?.

(s/t)f(t) = w (){(s/t)(Mt−µ?)}≤w (){Ms−µ?} = f(s)if(s/t)(Mt−µ?) ⊆ Ms−µ?.

To conclude, we need to show that whenever s ≤ t, the containment holds. That
is, that every vector v ∈ (s/t)(Mt−µ?) is also in Ms−µ?. And because Ms−µ?

is the set of vectors v for which (i) v+µ? ∈ M and (ii) ρ(v) ≤ s, that amounts
to showing that every vector v ∈ (s/t)(Mt − µ?) has these two properties.

To do this, recall that definitionally each vector v ∈ (s/t)(Mt − µ?) has the
form v = (s/t)(u− µ?) for some u ∈ M with ρ(u− µ?) ≤ t.

(i)

Lettingλ = s/t ∈ [0, 1], v + µ? = λ(u− µ?) + µ? = λu+ (1− λ)v,

i.e., v + µ? is a convex combination of two vectors in M and therefore is
in the model.

(ii)

ρ(v) = ρ{λ(u−µstar)} = λρ(u−µstar) ≤ s because λ = s/t and ρ(u−µ?) ≤ t.

Now you should have what you need to prove that (3) implies (4).

Exercise 4 Prove that if s2 ≥ 2σw(Ms − µ?), then (s+ x)2 ≥ 2σw(Ms+x −
µ?) + sx for any x ≥ 0. Then briefly explain why this and (3) together imply
(4). A sentence or two should be enough for this explanation.
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Tip. You can get a condition equivalent to the one you want to show by
dividing both sides by s+ x.

(s+ x)2 ≥ 2σw(Ms+x − µ?) + sx if and only if

s+ x ≥ 2σ
w(Ms+x − µ?)

s+ x
+

s

s+ x
x.

Looking at this equivalent condition, compare the first term on the left side to
the first term on the right and the second term on the left side to the second
term on the right.

Solution 4 To prove the claimed implication, we’ll use the tip. Suppose s
satisfies s2 ≥ 2σw(Ms − µ?) or equivalently s ≥ 2σw(Ms − µ?)/s.

2σ
w(Ms+x − µ?)

s+ x
≤ 2σ

w(Ms − µ?)

s
≤ s because width is sublinear and s+ x ≥ s

s

s+ x
x ≤ x because s

s+ x
≤ 1 and x ≥ 0.

Summing both sides, we get the equivalent condition the tip suggests we show.
What remains is to show that the bound in (3) implies eq:error-bound-

simplified. Suppose s satisfies s2 ≥ 2σw(Ms − µ?) as assumed in (4). Then,
letting x = 2σ

√
2{1+2 log(2n)}

δn , it follows from what we’ve just proven that
(s + x)2 ≥ 2σw(Ms+x − µ?) + sx. That is, it follows that the radius s + x
that (4) claims is a bound on ‖µ̂ − µ?‖ does, in fact, satisfy the condition
required by (3) to actually be a bound on ‖µ̂− µ?‖.
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3 A More Realistic Error Bound
Setting. In this section, we will consider the case that we observe pairs
(X1, Y1) . . . (Xn, Yn) where X1 . . . Xn are deterministic and Yi = µ(Xi) + εi
for ε1 . . . εn that are independent, but not necessarily identically distributed,
random variables with E εi = 0.

What’s more realistic about this? It describes the kind of data we get with
an actual usable sampling mechanism. If we draw pairs (X1, Y1) . . . (Xn, Yn)
uniformly at random with replacement from a population (x1, y1) . . . (xm, ym),
then do our analysis conditioning on X1 . . . Xn, this is the setting we find our-
selves in. In that case, our signal is µ(x) = E[Yi | Xi = x] = 1

mx

∑
j:xj=x yj , the

average outcome among people in the population with xj = x. And the high
probability error bounds we prove hold with conditional probability 1-δ.1

In this setting, we can prove the following error bound in terms of the random
vector ε ∈ Rn with ith element εi.

‖µ̂− µ?‖L2(Pn) < s+ 2

√
2Σ

δn
w.p. 1− δ if s2

2
≥ wε(Ms

◦ − µ?)

for µ? = argmin
m∈M

‖m− µ‖L2(Pn),

wε(V) = Emax
v∈V

〈ε, v〉L2(Pn)
,

and Σ = E max
i∈1...n

ε2i .

(5)

We’ll start with a warm-up.

Exercise 5 Prove, by plugging in εi
iid∼ N(0, σ2), that this error bound (5)

implies the bound we use in the gaussian case (2). A sentence or two should do.
You can use, without proof, the bound Emaxi∈1...n ε

2
i ≤ σ2{1 + 2 log(2n)}

That’s Lemma 11.3 of Boucheron, Lugosi, and Massart’s Concentration In-
equalities: A Nonasymptotic Theory of Independence.

A Correction. There’s a little bit of a mixup about whether we’re meant to
be showing something like (4) or (3). Option 1. If we’re meant to be showing
something like (4), then the condition on s should be

s2

2
≥ wε(Ms − µ?)

referring to the neighborhood Ms − µ? rather than its boundary Ms
◦ − µ?.

Option 2. If we’re meant to be showing something like (3) or (2), then the
condition on s should be

s2

2
≥ wε(M◦

s − µ?) + s

√
2Σ

δn
,

1This implies they hold with unconditional probability 1 − δ too. For any event A and
conditioning set B, by the law of iterated expectations, the probability of any event A is the
expected value of the conditional probability of A given B: P (A) = E[1A] = E[E[1A | B]] =
E[P (A | B)].
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including a linear-in-s term as in those bounds. In my solution, I’ll do the
Option 1 version.

Solution 5 I’ll be a little verbose here.
First, observe that the ‘crossing-point condition’ characterizing s in (5) and

(4) are equivalent. Our noise vector ε is a scaled version of the standard normal
vector g used in the definition of gaussian width: ε = σg, as multiplying a
standard normal gi by σ give you a gaussian with mean zero and variance σ2.
It follows that wε(V) = σw(V) for all sets V.

wε(V) = Emax
v∈V

〈σg, v〉2 = σmax
v∈V

E〈g, v〉2 = σw(V).

Thus, the condition that s satisfies s2/2 ≥ 2wε(Ms − µ?) [here in (5)] is
equivalent to the condition that s satisfies s2/2 ≥ 2σw(Ms − µ?) [in (4)].

Second, given s satisfying this condition, the bound on ‖µ̂− µ?‖ given above
in (4) is valid (i.e. exceeds ‖µ̂−µ?‖) whenever the one given here in (5) is valid,
as the former bound s + 2

√
2σ2{1+2 log(2n)}

δn is, in light of the bound on Σ from

the Concentration Inequalities book, larger than the latter bound s+ 2
√

2Σ
δn .

It’s time to prove the new bound. Virtually everything you’ll need can be
borrowed from lecture, but I’m going to ask you to write a complete proof,
copying out the parts you need to. This is meant as encouragement to review
the proofs from lecture and understand how they work.

Exercise 6 Write out a complete proof of the new error bound (5). You don’t
need to include a proof of the Efron-Stein inequality or anything you’ve proven
above in Section 2, but everything else should be included.

Solution 6 This one I’m omitting. My proof is on the slides.

To make this bound useful, we’ll need to bound wε(M◦
s − µ?) for some

models M. Today, we’ll do that for the gaussian case εi
iid∼ N(0, σ2). Later

in the semester, we’ll prove bounds of the form wε(V) ≤ αw(V) that hold for
every set V with a constant α that depends on the distribution of ε. This’ll let
us use our gaussian width bounds together with (5) to get concrete, realistic
error bounds.
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4 Gaussian Width Calculations
In this section, we’re going to be talking about two sets of linear functions of
K-dimensional covariates, i.e., functions of the form m(x) = xTβ for x ∈ RK .
The first, the kind of linear model we talk about in classes like QTM220, will be
the set of all of these. Here’s how we write it, both as a set of functions and as
the set of vectors [m(X1),m(X2), . . . ,m(Xn)] ∈ Rn that we get by evaluating it
at our observations. We’ll let X be the K × n matrix with columns X1 . . . Xn.

M = {m(x) = xTβ : β ∈ RK} as a set of functions
= {XTβ : β ∈ RK} as a set of vectors

(6)

The second, the set of linear functions we work with when we use the lasso, is
the subset of these with coefficients satisfying a one-norm bound ‖β‖1 ≤ B.

M = {m(x) = xTβ : β ∈ RK and ‖β‖1 ≤ B} as a set of functions
= {XTβ : β ∈ RK and ‖β‖1 ≤ B} as a set of vectors

(7)

Throughout, we’ll focus on the gaussian noise case: ε1 . . . εn
iid∼ N(0, σ2).

4.1 The Linear Model
Exercise 7 Find an upper bound on the gaussian width w(Ms − µ?) of a cen-
tered neighborhood Ms − µ? in the linear model (6). Then give a bound on the
error ‖µ̂−µ?‖L2(Pn) of the least squares estimator in this model that holds with
probability 1− δ.

Tips.

1. It’ll be convenient to work with the Euclidean norm ‖·‖2 and inner product
〈·, ·〉2 instead of the sample two norm and inner product. Rewrite the s2 ≥
max . . . condition in (4) in terms of these using the scaling-up relationships

‖·‖2 =
√
n‖·‖L2(Pn) and 〈·, ·〉2 = n〈·, ·〉L2(Pn).

Ms − µ? = {XT v : v ∈ RK and ‖XT v‖2 ≤ s
√
n}. Why?

2. You’re going to want to use the Cauchy-Schwarz bound, but the bound
〈ε,XT v〉2 ≤ ‖ε‖2‖XT v‖2 ≤ ‖ε‖2s

√
n isn’t going to be good enough. The

bound we get this way is the same one we got in lecture for the completely
general model. Take a look at Appendix A. What is E‖εu‖2 where εu =∑K

j=1〈ui, ε〉2ui is the projection of ε onto the span of the columns of X?

3. For any random variable Z including Z = ‖εu‖2,

EZ2 = (EZ)2 +Var(Z) and therefore (EZ)2 ≤ EZ2.
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Solution 7 We’ll start by addressing the ‘Why?’ part of Tip 1, i.e. by showing
that the set of vectors in Ms − µ? is

Ms − µ? = {XT v : v ∈ RK and ‖XT v‖2 ≤ s
√
n}.

1. Because µ? ∈ M, we know that, in vector terms, it’s XTβ? for some
β? ∈ RK . And it follows that M− µ? = {XT (β − β?) : β ∈ RK}.

2. Of these, the vectors in our neighborhood satisfy

s2 ≥ ‖m−µ?‖2L2(Pn)
=

1

n

n∑
i=1

(XT
i β−XT

i β?)
2 =

1

n

n∑
i=1

{XT (β−β?)}2i =
1

n
‖XT (β−β?)‖22.

Rearranging, we get
√
ns ≥ ‖XT (β − β?)‖2.

Making the substitution v = β − β? gives the claimed characterization.

The Width Calculation. Now let’s characterize the gaussian width of this
neighborhood in vector terms.

w(Ms − µ?) = E max
h∈Ms−µ?

1

n
〈ε, h〉2 for εi

iid∼ N(0, 1)

=
1

n
E max

h=Xβ

‖XT v‖2≤
√
ns

〈ε, XT v〉2

Here’s where the projection stuff from Appendix A comes in. Let’s work with
the decomposition ε = ε‖ + ε⊥ where ε‖ is the orthogonal projection of ε onto
the image of XT . This satisfies 〈ε‖, XT v〉2 = 〈ε, XT v〉2 for all v, so

max
h=Xβ

‖XT v‖2≤
√
ns

〈ε, XT v〉2 = max
h=Xβ

‖XT v‖2≤
√
ns

〈ε‖, XT v〉2

≤ max
h=Xβ

‖XT v‖2≤
√
ns

‖ε‖‖2‖XT v‖2 via Cauchy-Schwarz

≤ ‖ε‖‖2 ×
√
ns as a result of our neighborhood constraint.

Taking the expectation of this, we get a bound on gaussian width.

w(Ms − µ?) ≤
1

n
E‖ε‖‖2 ×

√
ns =

s√
n
E‖ε‖‖2.

What’s E‖ε‖‖2? We’ll show it’s less than
√
K. To do this, we’ll use the bound

{E[Z]}2 ≤ E[Z2] for Z = ‖ε‖‖2 and the explicit formula ε‖ =
∑K

j=1〈ε, uj〉2uj
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in terms of an orthonormal basis u1 . . . uK for the image of XT . Here goes.{
E‖ε‖‖2

}2 ≤ E‖ε‖‖22

= E

∥∥∥∥∥∥
K∑
j=1

〈ε, uj〉2uj

∥∥∥∥∥∥
2

2

using our formula for ε‖

= E

〈
K∑
j=1

〈ε, uj〉2uj ,

K∑
k=1

〈ε, uk〉2uk

〉
2

using the definition ‖v‖22 = 〈v, v〉2

= E

K∑
j=1

K∑
k=1

〈ε, uj〉2〈ε, uk〉2〈uj , uk〉2 because inner products are linear

= E

K∑
j=1

〈ε, uj〉22 because our basis is orthonormal

=

K∑
j=1

E〈ε, uj〉22 because expectation is linear

=

K∑
j=1

E ε21︸︷︷︸
=1

= K because ε is spherically symmetric.

That’s it. We’ve proven the bound w(Ms − µ?) ≤ s
√
K/n.

The Error Bound. Substituting the width bound into our ‘crossing point
condition’, we find that

s = 2σ

√
K

n
satisfies s2

2σ
≥
√

K

n
≥ w(Ms − µ?).

Substituting this radius into our abstract error bound (4), we get a concrete
error bound that applies when we do least squares regression with gaussian noise
with variance σ2.

‖µ̂− µ?‖L2(Pn) ≤ 2σ

√
K

n
+ 2σ

√
2{1 + 2 log(2n)}

δn
with probability 1− δ.
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4.2 The Lasso
Exercise 8 Find an upper bound of the gaussian width w(M) of the model (7)
used in the lasso. Then use it to give a bound on the error ‖µ̂ − µ?‖L2(Pn) of
the least squares estimator in this model that holds with probability 1− δ.

Tips.

1. How can we bound the dot product 〈ε,XTβ〉2 = 〈Xε, β〉2 when ‖β‖1 ≤ B?
Look over the Inner Product Spaces Homework and Appendix B.

2. You can get away with using the bound w(Ms − µ) ≤ w(M) when calcu-
lating your error bound. It turns out we can’t do much better than this.
The reason is, in essence, that this model is so ‘pointy’ that unless s is
very small, it contains very few functions with ‖m−µ‖L2(Pn) > s anyway.
Section 7.5 of High Dimensional Probability explains this nicely.2

Solution 8
The Width Calculation. As suggested, we’ll use the radius-independent bound

w(Ms − µ?) ≤ w(M− µ?) = w(M).

The last identity follows from translation invariance of the gaussian width.
Writing the gaussian width of our model in vector terms, observing that

〈ε,XTβ〉2 = (XTβ)T ε = βT (Xε) = 〈β, Xε〉2

and using Hölder’s inequality, we get a bound in terms of the maximal absolute
value of K gaussian random variables.

w(M) =
1

n
E max

h=Xβ
‖β‖1≤1

=〈β, Xε〉2〈
ε, XTβ

〉
2

=
1

n
E max

β∈RK

‖β‖1≤1

‖β‖1 ‖Xε‖∞

≤ 1

n
E‖Xε‖∞ = E

[
max

j∈1...K
|Zj |

]
for Zj = XT

·j ε.

Interpretation. What we’re calling X·j isn’t the same thing as Xj—it’s not
any one individual’s covariate vector. It’s the vector of length n containing the
jth component of each individual’s covariate vector Xi. And 1

nZj is a weighted
average of those n values where each individual gets a gaussian weight εi.

Here’s where the stuff from Appendix B comes in. If we have any K gaussian
random variables Z1 . . . ZK with variance less than or equal to V , then

E max
j∈1...K

Zj ≤ 2
√
2V log(K).
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That doesn’t quite do what we want because we want the maximal absolute
value, but there’s a simple trick to make it work: the absolute value of Z1 is
the maximum of Z1 and −Z1, so the maximal absolute value of Z1 . . . ZK is the
maximum of Z1 . . . ZK and −Z1 . . . ZK — 2K gaussian random variables with
variance less than or equal to V .

E max
j∈1...K

|Zj | ≤ 2
√

2V log(2K).

What we need now is a bound σ2 on the variance of each Zi = XT
j ε. For this,

there’s another trick. If we have a dot product uT v, (uT v)2 = uT vvTu.
Taking u = X·j and v = ε, we get

Var[XT
·j ε] = E

[
(XT

·j ε)
2
]

= E
[
XT

·j εε
TX·j

]
using this trick

= XT
·jΣX·j where Σ = E

[
εεT
]

is the covariance matrix of ε
= XT

·j I X·j = ‖X·j‖22 because ε’s covariance matrix is the identity.

How do we know that Σ is the identity? Let’s do the calculation to show its
elements are one on the diagonal and zero elsewhere.

Σij = E εiεj =

{
E ε2i = 1 if i = j

E εiεj = 0 if i 6= j

Let’s put it all together.

w(M) ≤ 1

n
× 2
√
2V log(2K) for V = max

j
‖Xj·‖22 = n×max

j
‖Xj·‖2L2(Pn)

=
2B
√

2 log(2K)
n

for
B = max

j
‖Xj·‖L2(Pn)

Here you can think of B as the typical magnitude of the largest component of
our individual’s covariate vectors Xi. In particular, if the elements of X are in
[−1, 1], B ≤ 1.

The Error Bound.
Proceeding as in the previous problem, we find a radius s that satisfies our

crossing point condition. The crossing point picture is admittedly a bit simplistic
here because our bound on a neighborhood’s width doesn’t depend on its radius—
we’re looking at the point where the function f(s) = s2 crosses a horizontal
line—but it works.

s2 ≥
2B
√

2 log(K)
n

≥
w(Ms − µ?) is satisfied for s =

√
2
√
2B

4

√
log(K)

n
.
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And it follows from (4) that, when we use the lasso when we have gaussian noise
with variance σ2, we get this error bound.

‖µ̂−µ?‖L2(Pn) ≤ 2σ

√
2
√
2B

4

√
log(2K)

n
+2σ

√
2{1 + 2 log(2n)}

δn
with probability 1− δ.

Interpretation. This is, for what it’s worth, called the slow rate or as-
sumptionless analysis of the lasso. The essential lesson is that if we’re willing
to predict Yi using some absolutely convex combinations of the components of
our covariate vectors Xi, then it doesn’t really matter how many components
there are. That’s what it means for our bound to be proportional to 4

√
log(2K),

which is so slow-growing that it goes from roughly 1 to 3 as we increase K from
1 to the mass of the earth in grams.

What we don’t like about this bound is the way it varies with sample size n:
a fourth-root rate. There’s a fancier argument we can use when X is a very
special matrix and most components of β? are zero that leads to a what is called
a sparsity-dependent fast rate bound, which can be better.
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A Projections
It’s often useful to decompose a vector into relevant and irrelevant parts. For
example, if we’re interested in an inner product 〈u,Av〉, it’s helpful to decompose
u as a sum u‖ + u⊥ where 〈u⊥, Av〉 = 0 for all v. This is particularly nice if
we’re going to use a Cauchy-Schwarz bound, as we can get a better bound by
first getting rid of the irrelevant part u⊥.

〈u,Av〉 = 〈u‖, Av〉+ 〈u⊥, Av〉 = 〈u‖, Av〉 ≤ ‖u‖‖‖Av‖.

The best way to do this, in the sense that ‖u‖‖ is smallest, is to take u‖ to be
the orthogonal projection onto the image of A—the image of A is the set of all
vectors we can write as matrix-vector projects Av. To do that, we’ll want an
orthonormal basis for the image of A, i.e., a set of vectors u1, u2, . . . with the
property that 〈ui, uj〉 is one if i = j and zero otherwise. To get a basis like this,
we can run any set of vectors that spans the image of A, e.g. the columns of A,
through the Gram-Schmidt Process. Then we write u‖ as a linear combination
of these vectors, u‖ =

∑
k uk〈uk, u〉. To check that 〈u‖, Av〉 = 〈u,Av〉 for all v,

observe that because u1, u2, . . . is a basis for the image of A, we can express Av
as a linear combination

∑
k αkuk of these basis vectors. And we can calculate

〈u,Av〉 and 〈u‖, Av〉 and compare. They’re the same.

〈u,Av〉 =

〈
u,
∑
k

αkuk

〉
=
∑
k

αk〈u, uk〉

〈u‖, Av〉 =

〈∑
j

uj〈uj , u〉,
∑
k

αkuk

〉
=
∑
j

∑
k

αk〈uj , uk〉〈uj , u〉 =
∑
k

αk〈uk, u〉

When we simplified the double sum above, we observed that terms with j 6= k
were zero because 〈uj , uk〉 = 0 and that 〈uj , uk〉 = 1 in terms with j = k.

I’ll leave it to you to convince yourself that this is the best we can do, i.e., that
there is no vector ũ‖ satisfying 〈ũ‖, Av〉 = 〈u,Av〉 for all v with ‖ũ‖‖ < ‖u‖‖.

This all works with any inner product 〈u, v〉 and associated norm ‖v‖ =√
〈v, v〉. In this homework, we’ll use it to talk about the dot product between

gaussian vectors and vectors of the form Av. Note that if A is a m× n matrix,
then our basis u1, u2, . . . contains at most min(m,n) vectors.
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B Bounding Expectations by Integrating Tail Bounds
Going from bounds on tail probabilities to bounds on expectations is basically
just a matter of integration, as EZ =

∫∞
0

P (Z > z)dz for any positive random
variable Z. Here’s a proof.

EZ = E

∫ Z

0

1dz = E

∫ ∞

0

1(Z > z)dz =

∫ ∞

0

E1(Z > z)dz =

∫ ∞

0

P (Z > z)dz.

More generally, EZ ≤
∫∞
0

P (Z > z)dz for any random variable Z. To show
that, we can use the formula for nonnegative random variables on Z+ = max{Z, 0}
and observe that (i) EZ ≤ EZ+ and (ii) P (Z+ > z) = P (Z > z) for z ≥ 0.

Let’s use it to derive a bound on the expected value of the maximum MK =
maxj∈1...K Zj of K mean-zero normals Zj ∼ N(0, σ2) using a tail bound from
a previous lecture. We’ll use the tail bound P (MK ≥ z) ≤ Ke−z2/2σ2 that we
substituted z = 2σ

√
log(K) into to get the bound P (MK ≥ 2σ

√
log(K)) ≤ 1/K

in our lecture on least squares in finite models.2Here’s the bound.

EMK ≤ 2σ
√

2 log(K).

To prove it, we’ll break the integral EMK =
∫∞
0

P (MK > z)dz into a sum of
two integrals, one up to z0 and one from there to ∞. We’ll bound the first using
the simple observation that probabilities are less than one. And we’ll bound the
second using the fact that z/z0 ≥ 0 on the domain of integration [z0,∞) and
the identity (d/dz)e−z2/2 = −ze−z2/2.

EMK =

∫ z0

0

P (MK ≥ z) +

∫ ∞

z0

P (MK ≥ z)

≤
∫ z0

0

1 +

∫ ∞

z0

z

z0
Ke−z2/2σ2

≤ z0 +
σ2K

z0

∫ ∞

z0

z

σ2
e−z2/2σ2

= z0 −
σ2K

z0

∫ ∞

z0

d

dz
e−z2/2σ2

= z0 −
σ2K

z0
e−z2/2σ2

|∞z0

= z0 +
σ2Ke−z2

0/2σ
2

z0
.

Taking z0 = σ
√
2 log(K), e−z2

0/2σ
2

= e− log(K) = 1/K. And we get this bound.

EMK ≤ σ
√
2 log(K) +

σ2K × 1/K

σ
√
2 log(K)

= σ

(√
2 log(K) +

1√
2 log(K)

)
.

2More generally, this tail bound holds for any random variables Z1 . . . ZK satisfying the
bound P (Zj ≥ z) ≤ 1

2πσ2 e
−z2/2σ2 , like a gaussian with mean zero and variance less than or

equal to σ2 would.
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The bound EZK ≤ 2σ
√
2 log(K) is a simplified version of this. Let’s focus on

the case that K ≥ 2. Because 2 log(K) ≥ 2 log(2) > 1 for K ≥ 2, the second
term in curly brackets is smaller than the first, so their sum is bounded by twice
the first. Thus, EZK ≤ 2σ

√
2 log(K) as claimed.

This bound applies for K = 1 as well, as in that case MK = Z1 and EMK =
EZ1 = 0.
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