
Inner Product Spaces

January 31, 2025

1 Inner Products
A semi-inner-product 〈u, v〉 on a real vector space is a real-valued function of
two vectors u, v that is symmetric, linear in its arguments, and positive. That
is, for all vectors u, v, w and scalars α ∈ R,

〈u, v〉 = 〈v, u〉, 〈u+ αv,w〉 = 〈u,w〉+ α〈v, w〉, and 〈u, u〉 ≥ 0.

An inner product is a semi-inner-product that is positive definite, i.e., that
satisfies 〈u, u〉 = 0 if and only if u = 0. We tend to talk more about inner
products than semi-inner products, but there are a few semi-inner products we
use often that aren’t positive-definite.

Here are some examples of semi-inner products.

◦ For real scalars, we have the product 〈u, v〉 = uv.

◦ On finite dimensional vectors v ∈ Rn, we have the dot product, 〈u, v〉2 :=∑n
i=1 uivi = uT v.

◦ On functions v(x), in terms of a random variable X with distribution P,
we have the population inner product 〈u, v〉L2(P ) = E[u(X)v(X)] and the
covariance CovP(u, v) = E [{u(X)− E[u(X)]}{v(X)− E[v(X)]}].

Exercise 1 Prove that these examples are semi-inner-products.

Solution 1 Let’s start with the real scalars.

◦ Symmetry: 〈u, v〉 = uv = vu.

◦ Linearity: 〈u+ αv,w〉 = (u+ αv)w = uw + αvw = 〈u,w〉+ α〈v, w〉.

◦ Positivity: 〈v, v〉 = v2 ≥ 0.

The finite-vector and population two norms are just sums and expectations of
these, and since these properties hold for each coordinate vi or function eval-
uation v(x), they hold for these sums and expectations. Same for symmetry
and linearity of the covariance, and we can show positivity the same way, too:
CovP(v, v) = E

[
(v(X)− E v(X))2

]
is the expectation of the square of a real-

valued random variable.
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For each of these, there is an associated seminorm ρ(v) =
√
〈v, v〉. In fact,

they’re all included in the list of examples in the Vector Spaces Homework. To
work out which it is, you can write out 〈v, v〉 for the specific semi-inner-product
you’re thinking about, then compare to the example seminorms’ definitions.

Exercise 2 For each of these examples of semi-inner-products, what is the
corresponding seminorm?

Solution 2 For CovP, sdP. For the others, look for matching subscripts.

Sample Inner Products Just like with seminorms, sometimes when we’re
working with a sample X1 . . . Xn, we think of functions as vectors: for functions
u and v, 〈u, v〉2 =

∑n
i=1 u(Xi)v(Xi). And, as with the seminorms, this is just a

scaled version of the population inner product for the empirical distribution Pn,
which is the distribution that puts probability 1/n on each of our n observations.

〈u, v〉L2(Pn) =
∑

x∈X1...Xn

P (X = x) u(x)v(x)

=

n∑
i=1

1

n
u(Xi)v(Xi) =

1

n
〈u, v〉2.

1.1 Cauchy-Schwarz Inequality
The Cauchy-Schwarz inequality is the first tool we reach for when bounding a
semi-inner-product. For any semi-inner-product 〈·, ·〉, |〈u, v〉| ≤ ρ(u)ρ(v) where
ρ(v) =

√
〈v, v〉; furthermore, given any u, there is always a vector v of a given

‘length’ ρ(v) for which this bound is attained.

Exercise 3 Think about the Cauchy-Schwarz inequality in context of the inner
product 〈u, v〉 = uv on scalars, the dot product 〈u, v〉2 = uT v, and the covariance
inner product CovP(u, v). In each context, what does it say? Be as context-
specific as you can; repeating the definition three times is not an instructive
exercise. A sentence or two will do for each.

Solution 3 For scalars, it says the magnitude of a product is less than the
product of their magnitudes. In fact, it is the product of their magnitudes in
general.

In the case of finite vectors, it says that the magnitude of the dot product
is no larger than the product of their lengths. It is the product of their two
lengths times the absolute value of the cosine of the angle between them, equal to
the product of lengths when those vectors are pointing in the same or opposite
directions.

For functions, it says (using the population inner product) that the average
of the product is no larger than the product of their ’typical sizes’—their root-
mean-squares. This is equal, as in the vector case, when one is a scalar multiple
of the other. And (using the covariance inner product), that their covariance is
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no larger than the product of their standard deviations, equal when the functions’
deviations from their mean are scalar multiples.

I will not ask you to prove the Cauchy-Schwarz inequality, but if you’re
interested, take a look at one of the proofs on Wikipedia.

1.2 Hölder’s Inequality
To bound the dot product on vectors in Rn, Hölder’s inequality is the second
tool we reach for. While this is a fairly general tool, we often use a simple special
case that’s easy to prove: the one for the dot product, |〈u, v〉2| ≤ ‖u‖1‖v‖∞.1

Exercise 4 Prove it! If it takes you more than one line, you’re doing it wrong.

Solution 4 ∣∣∣∣∣∑
i

uivi

∣∣∣∣∣ ≤ ∑
i

|ui||vi| ≤
∑
i

|ui|(max
i

|vi|) = ‖v‖∞‖u‖1.

There are also versions for some inner products on functions. We’ll want one
for sample inner products analogous to the one we have for the dot product on
vectors above: 〈u, v〉L2(Pn) ≤ ‖u‖L1(Pn)‖v‖L∞(Pn).

Exercise 5 Prove it! If you want, you can write a new proof, but it may be
more instructive to show that it’s implied by the case for vectors in Rn.

Solution 5 Given functions u(x) and v(x), consider the n-dimensional vectors
with elements ui = u(Xi) and vi = v(Xi). The sample inner product is 1/n
times the dot product of these vectors, and the one and infinity norms of these
two functions are 1/n and 1 times the one and infinity norms of these vectors.
Thus, the left and right sides of the bound for the sample norms are 1/n times
the left and right sides of the bound for the n-dimensional vectors.

1.3 Triangle Inequality
When we showed that a few of our examples of seminorms are in fact semi-
norms in last week’s homework, we didn’t deal with any examples of seminorms
associated with semi-inner-products. Let’s do that now. Or the hard part,
anyway.

Exercise 6 Prove that, for any semi-inner product 〈u, v〉, the seminorm ρ(v) =√
〈v, v〉 satisfies the triangle inequality.

Hint. You want to show that ρ(u + v)2 ≤ {ρ(u) + ρ(v)}2. You know that
ρ(u+ v)2 = 〈u+ v, u+ v〉. Expand this as the sum of four terms using linearity,
then see what you can work out using the Cauchy-Schwarz inequality.
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Hint. If you are not entirely comfortable with notation 〈u, v〉 for inner prod-
ucts, use the more familiar notation uT v.

Solution 6

ρ(u+ v)2 = 〈u+ v, u+ v〉
= ρ(u)2 + ρ(v)2 + (〈u, v〉+ 〈v, u〉)
≤ ρ(u)2 + ρ(v)2 + 2ρ(u)ρ(v)

= {ρ(u) + ρ(v)}2.

2 Complex Vector Spaces
This semester, we’ll mostly be working with real numbers, real vectors, and real-
valued functions. But just like in high school algebra, it’s occasionally useful
to work with complex ones. Notationally, x ∈ C is a complex number, v ∈ Cn

is a complex vector, and v : X → C is a complex-valued function. If you’ve
forgotten how to work with complex numbers, here’s what you’ll need to know.

1. A complex number is x+ iy where x and y are real numbers and i =
√
−1.

2. These add and multiply as you’d expect: if z1 = x1+iy1 and z2 = x2+iy2,
then z1 + z2 = (x1 + x2) + i(yi + y2) and z1z2 = (x1 + iy1)(x2 + iy2) =
x1x2 + i2y1y2 + i(y1x2 + x1y2) = x1x2 − y1y2 + i(y1x2 + x1y2). Think
about this: what happened to the i2 in the last equality?

3. We tend to think of a complex number z = x + iy as a vector in the
plane with magnitude |x+ iy| =

√
x2 + y2 and angle tan−1(y/x). We call

z̄ = x−iy the complex conjugate of z = x+iy, which allows us a convenient
expression for the magnitude of z: |z| =

√
zz̄. Note that a+ b = ā + b̄,

and ab = āb̄, and ā = a for a, b ∈ C. We will also refer to the complex
conjugate of a vector or a function, which is interpreted elementwise. For
a vector v ∈ Cn with elements vi, v̄ is the vector with elements v̄i; for a
complex-valued function v, v̄ is the function with v̄(x) = v(x) for all x.

When we’re thinking about spaces of vectors v ∈ Cn or functions v : X → C,
we’ll want to think of them as elements of a complex vector space, i.e., as elements
in a vector space where the scalars are complex numbers. For example, …

◦ for a vector v ∈ Cn and a scalar α ∈ C, u = αv ∈ Cn will be the vector
with elements ui = αvi.

◦ for a function v : X → C and a scalar α ∈ C, u = αv : X → C is the
function with u(x) = αv(x) for all x ∈ X .

To talk about inner products on complex vector spaces, we need to make one
small change to our definition of a semi-inner product from Section 1. We have
to talk about conjugate-symmetry instead of symmetry. A semi-inner-product
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〈u, v〉 on a complex vector space is a complex-valued function of two vectors u, v
that is conjugate-symmetric, linear in its arguments, and positive. That is, for
all vectors u, v, w and scalars α ∈ C,

〈u, v〉 = 〈v, u〉, 〈u+ αv,w〉 = 〈u,w〉+ α〈v, w〉, and 〈u, u〉 ≥ 0.

Why conjugate-symmetry? Think about the simplest complex vector space: the
complex numbers C. By using the inner product 〈u, v〉 = uv̄ for u, v ∈ C, we
get the magnitude |v| =

√
vv̄ as the norm ‖v‖ =

√
〈v, v〉. More generally, …

◦ For vectors u, v ∈ Cn, we typically use the inner product 〈u, v〉 = uT v̄,
and we get the norm ‖v‖ =

√∑
i|vi|2.

◦ For functions u, v : [0, 1] → C, we typically use the inner product 〈u, v〉 =∫ 1

0
u(x)v(x)dx, and we get the norm ‖v‖ =

√∫ 1

0
|v(x)|2dx.

If you look back at what’s written above and in last week’s homework, ev-
erything still works. Whenever 〈·, ·〉 is a semi-inner product on a complex vector
space and ‖v‖ =

√
〈v, v〉 is the corresponding seminorm, the Cauchy-Schwarz

inequality |〈u, v〉| ≤ ρ(u)ρ(v) and the triangle inequality ρ(u+ v) ≤ ρ(u) + ρ(v)
hold. And when 〈·, ·〉 is the inner product 〈u, v〉 = uT v̄ on Cn, Hölder’s inequal-
ity |〈u, v〉| ≤ ‖u‖∞‖v‖1 holds where ‖u‖∞ = maxi|ui| is the maximum of the
magnitudes of the elements of u and ‖v‖1 =

∑
i|vi| is the sum of the magnitudes

of the elements of v.
If you want some practice working with complex numbers, try the exercises

in Appendix A, where you’ll prove a few of these.

3 Self-adjoint Operators
In this problem, we’ll generalize of the idea of a symmetric matrix.

You can think of an n × n matrix A ∈ Rn×n as a linear operator on the
vector space Rn, i.e. a function from Rn to Rn that’s linear in the sense that
that A(αu + βv) = αAu + βAv for any α, β ∈ R and u, v ∈ Rn. And we
can talk about linear operators on other vectors spaces. For example, d

dx is a
linear operator on the space of infinitely-differentiable functions, as d

dx{αu(x)+
βv(x)} = α d

dxu(x) + β d
dxv(x).

When we’re working with an inner product 〈u, v〉 on our vector space V, we
can define the adjoint A? of a linear operator A to be another linear operator
satisfying 〈A?u, v〉 = 〈u,Av〉 for all vectors u and v. Here are some examples.

3.1 Operators on finite dimensional spaces
When we’re working with the dot product 〈u, v〉2 = uT v on Rn, the adjoint of
a matrix A ∈ Rn×n is its transpose AT .

〈ATu, v〉2 = (ATu)T v = uTAv = 〈u,Av〉2.
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When we’re working with the dot product 〈u, v〉2 = uT v̄ on Cn, the adjoint of a
matrix A ∈ Cn×n is its conjugate transpose ĀT . That is, it’s the matrix whose
elements are the complex conjugates of the elements in AT .

〈ĀTu, v〉2 = (ĀTu)T v̄ = uT Āv̄ = uTAv = 〈u,Av〉.

Why we use complex spaces. Even when we really intend to work with real-
valued vectors, it’s useful to think about matrices as operators on Cn and think
of the dot product 〈u, v〉2 as uT v̄. We have to deal with complex numbers in
any case, as matrices A ∈ Rn×n can have complex eigenvalues and eigenvectors.
And the inner product uT v we use on Rn isn’t an inner product on complex
vectors at all, as the norm ‖v‖2 = 〈v, v〉 associated with an inner product must
be positive and uTu will be negative for imaginary vectors.

3.2 Operators on spaces of functions
When we’re working with the inner product 〈u, v〉 =

∫∞
−∞ u(x)v(x)dx on the

vector space of infinitely-differentiable functions v : R → R with v(x) → 0 as
x → ±∞, the adjoint of the linear operator d

dx is − d
dx . To see this, we integrate

by parts.〈
u,

d

dx
v

〉
=

∫ ∞

−∞
u(x)v′(x)dx by definition

= u(x)v(x)|∞−∞ −
∫ ∞

−∞
u′(x)v(x)dx because (uv)′ = u′v + uv′

= 0 −
∫ ∞

−∞
u′(x)v(x)dx because u(x)v(x) →

x→±∞
0

=

〈
− d

dx
u, v

〉
.

Note that it’s important that our vector space includes only functions that go to
zero as x → ±∞; otherwise our ‘boundary term’ u(x)v(x)|∞−∞ would be nonzero
and we could not say that − d

dx was the adjoint of d
dx .

Specifying the vector space and inner product we’re using is more important
when talking about operators on spaces of functions than operators on finite-
dimensional vectors. We can essentially get away with assuming we’re talking
about Cn and 〈u, v〉 = uT v̄ in the latter case because that’s what everyone
always does; we don’t have unspoken defaults like this for operators on functions.

The Complex Case. The adjoint is still − d
dx if we’re thinking about d

dx as a
linear operator on the space of complex-valued infinitely-differentiable functions
with v(x) → 0 as x → ±∞ with the inner product 〈u, v〉 =

∫∞
−∞ u(x)v(x)dx.

It’s useful to think this way for the same reason it’s useful to think about Cn

instead of Rn.
You may not be familiar with derivatives and integrals involving complex-

valued functions. That’s no big deal.2 For a complex-valued function u : R → C,
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u(x) = ur(x) + iui(x) where ur and ui are real-valued functions, differentiation
and integration are done component-wise. That is, d

dxu(x) =
d
dxur(x)+i d

dxui(x)

and
∫
u(x)dx =

∫
ur(x)dx+i

∫
ui(x)dx. We can show that − d

dx is the adjoint of
d
dx by using integration by parts as above on the real and imaginary components
separately.

3.3 Self-adjointness
A self-adjoint operator on a vector space V with an inner product 〈u, v〉 is, as you
would expect, an operator that is its own adjoint. That is, we say an operator
A is self-adjoint if 〈Au, v〉 = 〈u,Av〉. Symmetric matrices, i.e. matrices A with
AT = A, are self-adjoint on Rn with the usual inner product 〈u, v〉 = uT v.
Conjugate-symmetric matrices, i.e. matrices A with AT = Ā, are self-adjoint
on Cn with the usual inner product 〈u, v〉 = uT v̄.

Now let’s talk about self-adjoint operators on spaces of functions. A classic
example is the differential operator − d2

dx2 on the space of 2-periodic complex-
valued twice-differentiable functions, {v : [−1, 1] → C : v(−1) = v(1)}, with
inner product 〈u, v〉 = (1/2)

∫ 1

−1
u(x)v(x)dx.3

Exercise 7 Prove that the operator − d2

dx2 on this space is self-adjoint. That is,
prove that 〈− d2

dx2u, v〉 = 〈u,− d2

dx2 v〉 for periodic functions u and v.

Hint. Integrate by parts twice. Why is it important that u and v be periodic?

Solution 7 We can use the integration-by-parts argument from Section 3.2 to
show that − d

dx is the adjoint of d
dx on this vector space. To do this, we’d

replace integration from −∞ to ∞ with integration from −1 to +1; the condition
v(−1) = v(1) for v ∈ V ensures that the boundary term u(x)v(x) |1−1 is zero.
Because − d2

dx2 v = − d
dx

d
dxv, it follows that〈

u,− d2

dx2
v

〉
=

〈
u,− d

dx

d

dx
v

〉
=

〈
d

dx
u,

d

dx
v

〉
=

〈
− d

dx

d

dx
u, v

〉
=

〈
− d2

dx2
u, v

〉
.

3.4 Diagonalizing self-adjoint operators
Just like a matrix, a linear operator L has eigenvalues and eigenvectors: scalars
λ and vectors v for which Lv = λv.4 In our example, they are defined by
the differential equation − d2

dx2 v = λv. And like a symmetric matrix, a self-
adjoint linear operator’s eigenvalues are real and the eigenvectors corresponding
to distinct eigenvalues are orthogonal.

Exercise 8 Prove that if L is a self-adjoint operator on a complex vector space
with an inner product 〈u, v〉, then its eigenvalues are real and the eigenvectors
corresponding to distinct eigenvalues are orthogonal. That is, prove that
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1. If Lv = λv for some vector v and scalar λ ∈ C, then λ ∈ R.

2. If Lv = λv and Lu = ηu for vectors v and u and λ 6= η ∈ C, then
〈u, v〉 = 0.

Having done this, explain why this implies that, for integers j and k with j 6= k,∫ 1

−1

sin(πkx) sin(πjx) =

∫ 1

−1

cos(πkx) cos(πjx) =

∫ 1

−1

cos(πkx) sin(πjx)dx = 0.

Hint. Recall from Section 2 that if 〈u, v〉 is an inner product on a complex
vector space, then for any vectors u and v,

〈u, v〉 = 〈v, u〉, 〈u+ αv,w〉 = 〈u,w〉+ α〈v, w〉, and 〈u, u〉 ≥ 0.

Hint. What are d2

dx2 sin(πkx) and d2

dx2 cos(πkx)?

Solution 8 Let u and v be eigenvectors of the self-adjoint operator A with
corresponding eigenvalues λ and η. First we’ll show that these eigenvalues are
real. Because A is self-adjoint,

λ〈u, u〉 = 〈λu, u〉 = 〈Au, u〉 = 〈u,Au〉 = 〈u, λu〉 = 〈λu, u〉 = λ̄〈u, u〉.

Furthermore, using this and self-adjointness again, we can show orthogonality
of eigenvectors.

λ〈u, v〉 = 〈Au, v〉 = 〈u,Av〉 = η〈u, v〉.

If λ 6= η, this can be true only if 〈u, v〉 = 0.
sin(πkx) and sin(πjx) are eigenvectors of the self-adjoint operator − d2

dx2 on
the space of periodic functions on [−1, 1] with inner product 〈u, v〉 = (1/2)

∫ 1

−1
u(x)v(x)dx

with eigenvalues kπ and jπ respectively. It follows that their inner product
(1/2)

∫ 1

−1
sin(πkx) sin(πjx) must be zero unless j = k. Same goes for cos(πkx)

and cos(πjx) as well as cos(πkx) and sin(πjx).

Later on, we’ll use the results we’ve proven to talk about the models defined
using the Sobolev seminorm ρ(v) =

√∫ 1

0
|v′(x)|2dx and its generalizations.
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A Inner Products on Complex Vector Spaces:
Exercises

These exercises are optional.

Exercise 9 (Optional). Prove that, for any semi-inner product 〈u, v〉 on
a complex vector space, the seminorm ρ(v) =

√
〈v, v〉 satisfies the triangle

inequality.
You may assume that the Cauchy-Schwarz inequality 〈u, v〉 ≤ ρ(u)ρ(v) holds.

Tip. Do you need to change your solution to Exercise 6? If so, how?

Solution 9 Take a look at the solution to Exercise 6. Everything is just arith-
metic except for one step: the one where we use the Cauchy-Schwarz inequality.
This one.

ρ(u)2 + ρ(v)2 + (〈u, v〉+ 〈v, u〉) ≤ ρ(u)2 + ρ(v)2 + 2ρ(u)ρ(v).

Or equivalently, subtracting ρ(u)2 + ρ(v)2 from both sides,

〈u, v〉+ 〈v, u〉 ≤ 2ρ(u)ρ(v).

When we were talking about real vector spaces, this was an obvious con-
sequence of the Cauchy-Schwarz inequality |〈u, v〉| ≤ ρ(u)ρ(v) (and |〈v, u〉| ≤
ρ(v)ρ(u) = ρ(u)ρ(v)). Why? If x is a real number, then x ≤ |x|; taking
x = 〈u, v〉 we have 〈u, v〉 ≤ |〈u, v〉| ≤ ρ(u)ρ(v). But when x isn’t a real number,
it isn’t even clear what x ≤ |x| means. Thankfully, we know that 〈u, v〉+〈v, u〉 is
a real number. This is implied by conjugate-symmetry: writing 〈u, v〉 = x+ iy,
we have 〈u, v〉+ 〈v, u〉 = (x+ iy) + x+ iy = (x+ iy) + (x− iy) = 2x.

Now let’s assume, for a moment, that the magnitude satisfies a triangle
inequality, i.e., that |z1 + z2| ≤ |z1| + |z2| for any z1, z2 ∈ C. Applying this to
z1 = 〈u, v〉 and z2 = 〈v, u〉, then using the Cauchy-Schwarz inequality, we get
the bound we want. We know that the real number z1 + z2 is less than or equal
to its magnitude |z1 + z2| = |〈u, v〉+ 〈v, u〉|, and consequently that …

〈u, v〉+〈v, u〉 ≤ |〈u, v〉+〈v, u〉| ≤ |〈u, v〉|+|〈v, u〉| ≤ ρ(u)ρ(v)+ρ(v)ρ(u) = 2ρ(u)ρ(v).

So all we need to do is show that the magnitude satisfies a triangle inequality.
And we’ve already done that in Exercise 6—we’ve just done it in disguise. If we
think of two complex numbers z1 = x1+ iy1 and z2 = x2+ iy2 as vectors (x1, y1)
and (x2, y2) in the plane R2, then the triangle inequality for the magnitude is
the triangle inequality for the two-norm of these vectors.

|z1 + z2| = ‖(x1 + x2, y1 + y2)‖2 ≤ ‖(x1, y1)‖2 + ‖(x2, y2)‖2 = |z1|+ |z2|.

Exercise 10 (Optional). Prove Hölder’s inequality for Cn.
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Solution 10 Take a look at the solution to Exercise 4.∣∣∣∣∣∑
i

uivi

∣∣∣∣∣ ≤ ∑
i

|ui||vi| ≤
∑
i

|ui|(max
i

|vi|) = ‖v‖∞‖u‖1.

This is still true. But when u, v ∈ Rn, we could justify the first inequality term-
by-term, as a consequence of the fact that uivi is either |uivi| or −|uivi| and
therefore uivi ≤ |uivi|. In the complex case, we can’t do this, but we can get
there using the triangle inequality for the magnitude repeatedly.∣∣∣∣∣

n∑
i=1

uivi

∣∣∣∣∣ ≤ |u1v1|+

∣∣∣∣∣
n∑

i=2

uivi

∣∣∣∣∣ ≤ |u1v1|+ |u2v2|+

∣∣∣∣∣
n∑

i=3

uivi

∣∣∣∣∣ ≤ . . . ≤
n∑

i=1

|ui||vj |.

Once we’ve done this, the rest of the solution is the same.
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Notes
1If you’d like to get a sense of Hölder’s inequality in full generality, take a look at this

wikipedia article.
2What makes calculus involving complex numbers different is not really dealing with

complex-valued functions, but rather with functions of a complex variable.
3If you prefer to think of these as periodic functions from R → C you can, since all a

2-periodic function does outside the interval [−1, 1] is repeat what it does on [−1, 1]. Some
people like to think of these as functions on the circle, too.

4The eigenvectors of operators on vector spaces of functions are sometimes called eigen-
functions.
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