
Smooth Regression

February 17, 2025

In this homework, we’ll briefly review Bounded Variation Regression and
then explore Lipschitz Regression, another form of smooth regression. We will
focus on the one-dimensional case, although it extends very naturally to higher
dimensions. Then we’ll look into rates of convergence, comparing this new
method to the stuff we’ve been using.

In my code, I’ll be using a few libraries.

library(CVXR)
CVXR::add_to_solver_blacklist('OSQP')
# OSQP claims some feasible problems aren't

And some functions we’ve been using in labs.

invert.unique = function(x) {
o = order(x)
dup = duplicated(x[o])
inverse = rep(NA, length(x))
inverse[o] = cumsum(!dup)
list(elements=o[!dup], inverse=inverse)

}

prediction.function = function(model) {
function(x) { predict(model, data.frame(X=x)) }

}

1 Review of Bounded Variation Regression
In class, we talked about using least squares regression to fit a function of
bounded total variation. If we are fitting µ(x) = E[Yi | Xi = x] for covariates
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Xi ∈ [0, 1], this estimator is

µ̂ = argmin
m

ρTV (m)≤B

1

n

n∑
i=1

{Yi −m(Xi)}2 where

ρTV (m) =

∫ 1

0

|m′(x)|dx for differentiable m

= sup
increasing sequences

x1≤x2≤...≤xk

x1...xk∈[0,1]

∑
j

|m(xj+1)−m(xj)| generally .

(1)

The set of functions we’re optimizing over, those with ρTV (m) ≤ B, is a set of
functions that doesn’t vary too much in total. It does, however, include both
functions that vary slowly throughout the interval [0, 1] and those that vary
quickly for a small part of it.

Exercise 1 To get a sense of what the constraint ρTV (m) ≤ B means, calculate
ρTV (m) for the following functions on [0, 1]. These are repeats from class.

1. m(x) = x

2. m(x) = x2

3. m(x) = ex

4. m(x) = sin(πx)

5. m(x) =

{
0 if x < 1

1 if x = 1

6. m(x) = sin(1/x)

Solution 1 1. m(x) = x increases from 0 to 1 on [0, 1], so its total variation
is 1.

2. m(x) = x2 increases from 0 to 1 on [0, 1], so its total variation is 1.

3. m(x) = ex increases from 1 to e on [0, 1], so its total variation is e− 1.

4. m(x) = sin(πx) increases from 0 to 1 on [0, 1/2] then decreases back to
zero on [1/2, 1], so its total variation is 1 + 1 = 2.

5. This step function increases from 0 to 1 on [0, 1], so its total variation is
1.

6. sin(1/x) oscillates from −1 to 1 on the interval [1/x0, 1] as sin(x) does on
the range [1, 1/x0], i.e., approximately (1/x0 − 1)/(2π) times. It follows,
taking x0 to zero, that it passes from −1 to 1 infinitely many times on
[0, 1], so its total variation is ∞.
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Exercise 2 For the following, which are a bit subtler, give an upper bound on
ρTV (m). If it’s infinite, explain why.

1. m(x) = x sin(1/x)

2. m(x) = x2 sin(1/x)

3. m(x) = x3/2 sin(1/x)

Hint: It might be hard to find the upper bound by looking at the graph of
some of these functions. Instead, find the derivative and a corresponding upper
bound for it, if possible. Your upper bound doesn’t have to be tight. When you
are bounding a sum, use the triangle inequality by adding the upper bound for
each term.

Solution 2 We’ll take a more calculus-based approach here. For the first,
ρTV (m) = ∞.

m′(x) = {x sin
(
x−1

)
}′ = sin

(
x−1

)
+x·cos

(
x−1

)
·−1/x2 = sin

(
x−1

)
−cos

(
x−1

)
/x.

In a neighborhood [0, ε] of zero, cos
(
x−1

)
/x oscillates between −1/x and 1/x

infinitely many times. Meanwhile, the sine is in [−1, 1], so it’ll have negligible
impact on the absolute value of m′(x)—it’ll be roughly |cos

(
x−1

)
|/x. And because

|cos
(
x−1

)
| is going to be bounded away from zero for most x near zero, this means

its integral is going to be at least a constant multiple of the integral
∫ ε

0
1/x. And

that integral is infinite.
The second is a bit different. ρTV (m) ≤ 3.

m′(x) = {x2 sin
(
x−1

)
}′ = 2x·sin

(
x−1

)
+x2 cos

(
x−1

)
·−1/x2 = 2x sin

(
x−1

)
−cos

(
x−1

)
.

It follows, via the triangle inequality, that

|m′(x)| ≤ 2x|sin
(
x−1

)
|+ |cos

(
x−1

)
| ≤ 3 on [0, 1].

Integrating, we get the bound ρTV (m) ≤
∫ 1

0
3 = 3.

The third is fairly similar to the second. ρTV (m) ≤ 5.

m′(x) = {x3/2 sin
(
x−1

)
}′ = (3/2)x−1/2 sin

(
x−1

)
− x3/2 cos

(
x−1

)
· −1/x2

= x−1/2{(3/2) sin
(
x−1

)
− cos

(
x−1

)
}.

If follows, via the triangle inequality, that

|m′(x)| ≤ x−1/2{(3/2)|sin
(
x−1

)
|+ |cos

(
x−1

)
|} ≤ (5/2)x−1/2.

Integrating, we get the bound ρTV (m) ≤ (5/2)
∫ 1

0
x−1/2 = (5/2) · 2x1/2 |10= 5.
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2 Lipschitz Regression
In some cases, it may be implausible that µ(x) varies quickly anywhere. In
that case, we may prefer to fit a Lipschitz function, for example by solving the
following least squares problem.

µ̂ = argmin
m

ρLip(m)≤B

1

n

n∑
i=1

{Yi −m(Xi)}2 where

ρLip(m) = sup
x∈[0,1]

|m′(x)| for differentiable m

= sup
x1,x2∈[0,1]

x1 6=x2

|m(x2)−m(x1)|
|x2 − x1|

generally .

(2)

We call ρLip(m) the Lipschitz constant of the function m. Let’s interpret the
general definition visually. It’s a maximum of the absolute value of the slope of
the functions’s secants.

Equivalence. Our definition for differentiable functions is equivalent because
(i) derivatives are included in the set of slopes we’re maximizing over, as they
are the slopes of tangents, which are just very short secants (ii) every slope in
this set is equal to a derivative, as the mean value theorem tells us that the
slope of the secant drawn from x = a to x = b is equal to the derivative of the
function at some point between a and b.

2.1 Finding Lipschitz Constants
Exercise 3 To get a sense of what this new type of constraint ρLip(m) ≤ B
means, calculate ρLip(m) for the examples from Exercise 1. Bound it or explain
why it’s infinite for the examples from Exercise 2. Is ρTV (m) ≤ ρLip(m) for all
of these examples? If so, either prove that it’s true for all functions m on [0, 1]
or find a counterexample.

Solution 3 In the examples, the Lipschitz constants are as follows, with maxx
taken over x ∈ [0, 1].

1. The Lipschitz constant of m(x) = x is maxx|1| = 1.

2. The Lipschitz constant of m(x) = x2 is maxx|2x| = 2.

3. The Lipschitz constant of m(x) = ex is maxx|ex| = e.

4. The Lipschitz constant of m(x) = sin(πx) is maxx|π cos(πx)| = π.

5. The Lipschitz constant of this step function is ∞.
As x ↑ 1, |m(1)−m(x)|/|1− x| → 1/0.
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6. The Lipschitz constant of sin(1/x) is ∞.
Let xk = 1/(kπ) and x′

k = 1/{(k + 1/2)π} and take k → ∞.

sin(1/x′
k)−sin(1/xk) = sin({k + 1/2}π)−sin(kπ) = 1−0 = 1 and x′

k−xk → 0.

and

1. The Lipschitz constant of x sin(1/x) is infinite, as its derivative is −1/x
for some points x arbitrarily close to zero. In particular, that happens at
x = 1/(2πk) for any integer k, where cos

(
x−1

)
= 1 and sin

(
x−1

)
= 0.

2. The Lipschitz constant of x2 sin(1/x) is less than or equal to 3 by the same
argument we used to bound its total variation.

3. The Lipschitz constant of x3/2 sin(1/x) is infinite, as its derivative is
−x−1/2 for points x = 1/(2πk) that are arbitrarily close to zero.

All of these where we’ve done the exact calculation are greater than or equal
to the corresponding total variation. Furthermore, we’ve found the Lipschitz
constant to be infinite where total variation is and sometimes where it is not.
In fact, this is true for all functions m. To see this, consider any increasing
sequence 0 = x1 < x2 . . . < xk = 1. Then, since

|m(xj+1)−m(xj)|
xj+1 − xj

≤ ρLip(m) for all j, it follows that

∑
j

|m(xj+1)−m(xj)| ≤
∑
j

ρLip(m)(xj+1 − xj) = ρLip(m)
∑
j

(xj+1 − xj) = ρLip(m).

As ρLip(m) is an upper bound on this sum for all increasing sequences, it follows
that it is at least as large as the least upper bound, ρTV (m).

2.2 Fitting the Lipschitz Model
As usual, we’ll start by solving for a function µ̂|X on the sample X = {X1 . . . Xn},
then extend it to the real line. Just like in the bounded variation lab, we’ll
translate our seminorm ρLip into a seminorm on functions m : X → R simply
by replacing the ’for all ... ∈ R’ (or [0, 1]) with a ’for all ... ∈ X ’. Like this.

µ̂|X = argmin
m

ρLip|X (m)≤B

1

n

n∑
i=1

{Yi −m(Xi)}2 where

ρLip|X (m) = sup
x 6=x′∈X

|m(x)−m(x′)|
|x− x′|

= sup
pairs i,j∈1...n
with Xi 6=Xj

|m(Xi)−m(Xj)|
|Xi −Xj |

.

(3)
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This is something we can handle. This depends on the values of m(x) only at the
observed data points x ∈ {X1 . . . Xn}, so we can implement it as an optimization
over a vector ~m ∈ Rn with the interpretation that ~mi = m(Xi). The constraint
ρLip|X (m) ≤ B can be expressed as a set of constraints on ~mi − ~mj for pairs
i, j.

Exercise 4 Rewrite this problem as a constrained optimization over the vector
~m. Try to do it so what you’ve written translates straightforwardly into CVXR
code.

Tip. There is a smaller set of constraints that implies the full set in (3). We’ll
get there in Exercise 10. For now, use the full set, like we did until the section
‘Optional Exercise: Optimization’ in the monotone regression lab.

Tip. If you want to keep things simple, go ahead and assume that X1 . . . Xn

take on n distinct values, just like we did at the beginning of the monotone
regression lab. If you want more generally applicable code, take a look at
how we use invert.unique in the monotone regression lab to handle duplicate
values.

Tip. CVXR seems to be having some trouble with this one if we use division
in our constraint, so don’t. To write your constraint without division, observe
that the following set of constraints are equivalent: (i) maxi≤n|ui/vi| ≤ B, (ii)
|ui|/|vi| ≤ B for all i ∈ 1 . . . n, and (iii) |ui| ≤ B|vi| for all i ∈ 1 . . . n.

Solution 4 A function with µ̂(Xi) = µ̂i solves (3) if the vector µ̂ solves

µ̂ = argmin
~m∈Rn

1

n

n∑
i=1

{Yi − ~mi}2 subject to the constraints

max
i,j∈1...n
Xi 6=Xj

|~mi − ~mj |
|Xi −Xj |

≤ B and max
i,j∈1...n
Xi=Xj

|~mi − ~mj | = 0.

(4)

Here the first constraint is our Lipschitz constraint and the second ensures that
we’re optimizing over functions; m(Xi) and m(Xj) must be equal if Xi = Xj.
We encode these constraints more compactly in this equivalent problem.

µ̂ = argmin
~m∈Rn

1

n

n∑
i=1

{Yi − ~mi}2 subject to the constraints

|~mi − ~mj | ≤ B|Xi −Xj | for all i, j ∈ 1 . . . n.

(5)

The subset of constraints in (5) on pairs Xi, Xj with Xi 6= Xj is equivalent
to the Lipschitz constraint from (4) while the subset on pairs with Xi = Xj is
equivalent to the constraint that we’re optimizing over functions.
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Exercise 5 Implement that optimization in R. That is, write an R func-
tion lipreg analogous to monotonereg from the monotone regression lab that
solves (3). Then, from the six distributions described below, sample n = 100
observations (X1, Y1) . . . (Xn, Yn) and use your code to calculate predictions
µ̂(X1) . . . µ̂(X1) based on the solution to (3) with variation bound B = 1. Each
time, plot your predictions on top of the data, i.e., make a single scatter plot
showing both your predictions (Xi, µ̂(Xi)) and your observations (Xi, Yi). Turn
in those six plots, labeling each with the signal used, as your solution to this
exercise.

We’ll sample observations around six signals.

1. A step, µ(x) = 1(x >= .5).

2. A line, µ(x) = x.

3. A vee, µ(x) = (x− .5)1(x ≥ .5).

4. A sine, µ(x) = sin(πx).

5. A damped rapidly oscillating curve, µ(x) = x sin(1/x).

6. A more-damped rapidly-oscillating curve, µ(x) = x3/2 sin(1/x).

For each, we’ll work with independent and identically distributed observations
(X1, Y1) . . . (Xn, Yn) where Xi is drawn from the uniform distribution on [0, 1]
and Yi = µ(Xi) + εi for εi drawn from the normal distribution with mean zero
and standard deviation σ = 1/10.

Solution 5 lipreg = function(X,Y,B=1) {
input = list(X=X, Y=Y)
n = length(X)
m = Variable(n)

mse = sum((Y - m)^2) / n

grid = expand.grid(i=1:n, j=1:n)
lipschitz.constraint = abs(m[grid$i] - m[grid$j]) <=

B * abs(X[grid$i] - X[grid$j])

# solve and ask for m that solves our minimization problem
solved = solve(Problem(Minimize(mse), list(lipschitz.constraint)))
mu.hat = solved$getValue(m)

# now a little boilerplate to make it idiomatic R
# 1. we record the input X and the solution mu.hat in a list
# 2. we assign that list a class, so R knows predict should
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# delegate to predict.convexreg
# 3. we return the list
model = list(X=X, mu.hat=mu.hat, input=input)
attr(model, "class") = "lipreg"
model

}

mus = list(step = function(x) { 1*(x >= .5) },
line = function(x) { x },

vee = function(x) { (x-.5)*(x >= .5) },
sin = function(x) { sin(pi*x) },

damped = function(x) { x*sin(1/x) },
betterdamped = function(x) { x^(3/2)*sin(1/x) })

make.plot = function(mu, fit=function(X,Y) { lipreg(X,Y,B=1) }) {
sigma = .1
n = 200
X = runif(n)
Y = mu(X) + sigma*rnorm(n)
model = fit(X,Y)
ggplot() +

geom_point(aes(x=X,y=Y), alpha=.2) +
geom_point(aes(x=model$X, y=model$mu.hat),

alpha=.4, color='blue')
}
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Exercise 6 Revisit the curves µ̂ you fit in the last exercise. For each, answer
these questions.

1. Does it fit the data?

2. If not, what — if anything — could we do to fit the data better?

Then, if there is something you can do, do it and include the resulting plot.

Solution 6 The ones that fit well are the line and the vee. Both are in our
regression model; they have Lipschitz constant 1. The Lipschitz constant of
sin(πx) is π; relaxing our constraint ρLip(m) ≤ 1 to ρLip(m) ≤ B for B ≥ π
gives a good fit. On the other hand, the step and damped rapidly-oscillating
curves aren’t Lipschitz at all (they have ρLip(µ) = ∞), so we’re not going to
get a good fit with Lipschitz regression no matter what. We get good fits to the
step and the better-damped oscillation using bounded variation regression with
appropriately chosen variation budget B, taking B = ρTV (µ) = 1 for the step
and B = 5 ≥ ρTV (µ) for the better damped oscillation (see Exercises 1 and
2). On the other hand, ρTV (µ) = ∞ for the other damped oscillation, so based
on the way we’ve been arguing you might think it’d be hard to fit with bounded
variation regression. It isn’t. This function can be approximated very well by
a function of bounded variation, as most of its variation happens near x = 0
where µ(x) ≈ 0. I’ve shown a good fit using bounded variation regression with
the total variation budget B = 5.
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What the fact that ρTV (µ) = ∞ for the damped oscillation tell us? It tells
us that, no matter what variation budget B we use, if we increased our sample
size n toward infinity without increasing the budget, at some point our fit µ̂
would essentially stop improving because there is some limit to how well we can
approximate µ using any curve m with ρTV (m) ≤ B. If, on the other hand, we
used cross-validation to select a budget at each n, our fit would keep improving.
What’d happen is that the sequence of selected budgets Bn would increase to ∞
as n → ∞ so that the selected model Mn = {m : ρTV (m) ≤ Bn} would include
better and better approximations to µ as we got enough data to need them.

2.3 Filling in the gaps
At this point, you have an estimator µ̂|X that minimizes squared error among
the functions m satisfying ρLip|X (m) ≤ B. This lets us plot some isolated points.
But we want a complete curve µ̂(x) for x ∈ [0, 1] that satisfies ρLip(µ̂) ≤ B, and
we want it to be the best-fitting such curve, i.e., we want the solution to (2).

To do this, we’ll use a piecewise-linear extension of µ̂|X . That is, having
sorted Xi into increasing order, we will define µ̂(x) everywhere on [X1, Xn] by
drawing line segments between successive points {Xi, µ̂(Xi)} and {Xi+1, µ̂(Xi+1)},
and extend the leftmost and rightmost segment to fill the intervals [0, X1] and
[Xn, 1].1 This gives us a piecewise-linear solution to (3). First, we’ll implement
it. Then we’ll verify that it is, in fact, a solution to (2).

Exercise 7 Briefly explain why piecewise-constant extension would not give us
a solution to (2). A sentence or a sketch should do.

Tip. Think about Exercise 3.

2.3.1 Implementation

Exercise 8 Write out a formula for the piecewise-linear curve µ̂(x) in terms
of µ̂(X1) . . . µ̂(Xn). Then implement it and add the curve µ̂(x) for x ∈ [0, 1] to
your plots from the last exercise.

Tip. For coding a piecewise linear function, try to modify the function predict.piecewise.constant
from the bounded variation lab.

Solution 7 I used a piecewise-linear curve in the solution to the Convex Re-
gression Homework, so I’ll borrow from there. Here’s the formula.

µ̂(x) = µ̂(Xi) +
µ̂(Xi+1)− µ̂(Xi)

Xi+1 −Xi
(x−Xi)

for i = max {i ∈ 1 . . . n− 1 : Xi ≤ x} ∪ {1}.
(6)

Here’s a little explanation. The formula for µ̂(x) is the formula for the line
through {Xi, µ̂(Xi)} and {Xi+1, µ̂(Xi)} where Xi for i ∈ 1 . . . n−1 is the largest
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Xi to the left of our query point x or, if there are none, X1. This last caveat
handles the case that x is to the left of X1; to handle the case that it’s to the
right of Xn, we’ve restricted the range of our search to 1 . . . n − 1 because if
we are to the right of Xn, we still want to use Xn−1 as our segment’s starting
point.

Here’s the implementation.

predict.piecewise.linear = function(model, newdata=data.frame(X=model$input$X)) {
Y = model$mu.hat; X=model$X; x=newdata$X; n = length(X)

# for each new data point x[k]
# find the closest observed X[i[k]] left of x[k]
# i.e., i[k] is the largest integer i for which X[i] <= x[k]
i = findInterval(newdata$X, X)
# If there is no X[i] < x[k], findInterval sets i[k]=0
# and we'll want to act as if we'd gotten 1 so we use the
# line through (X[1], Y[1]) and (X[2], Y[2])
# If that k is n, we'll want to act as if we'd gotten n-1 so we use
# the line through (X[n-1], Y[n-1]) and (X[n], Y[n])
i[i==0] = 1; i[i==n] = n-1
# make a prediction using the formula y - y0 = (x-x0) * slope
Y[i] + (x-X[i]) * (Y[i+1]-Y[i])/(X[i+1]-X[i])

}

predict.lipreg = predict.piecewise.linear

Here are the plots. The gray dots are observations (Xi, Yi), the black line is
µ(x), the blue dots are points {Xi, µ̂(Xi)} on the fitted curves, and the blue line
is µ̂(x).
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2.3.2 Verification

Exercise 9 Consider any pair x < x′. Prove that for any piecewise-linear func-
tion m with breaks at X1 . . . Xn, the secant slope {m(x′)−m(x)}/(x′−x) between
these points is a weighted average of the slopes {m(Xj+1)−m(Xj)}/(Xj+1−Xj)
of the segments that lie between them. Briefly explain why this implies that our
piecewise-linear solution µ̂ satisfies ρLip(µ̂) = ρLip|X (µ̂|X ) and why this implies
that µ̂ solves (2).

Tip. Break the ‘explain’ part of this down into feasibility and optimality, like
we did in the bounded variation regression lab.

Solution 8 What we’re going to do is break down the secant slope we’re in-
terested in as a weighted average of segment slopes. Let X1 . . . Xn be sorted in
increasing order and i and i′ be chosen as in (6) for x = x and x = x′ respec-
tively, so x and x′ are between Xi and Xi+1 and Xi′ and Xi′+1 respectively.2
We’ll expand the secant slope’s numerator, m(x′)−m(x), by adding zero writ-
ten in a fancy way, using a telescoping sum: 0 = −m(Xi′) +

∑i′−1
j=i m(Xj+1)−

m(Xj) +m(Xi). What we get is a sum of differences in the piecewise-constant
function m between points on the same segment. And we’ll rewrite those differ-
ences as the product of the segment slope and the distance between the points,
i.e., using the identity m(b)−m(a) = {b− a} × {m(b)−m(a)}/{b− a}. That
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gives us a weighted average of slopes. Take a look.

m(x′)−m(x)

x′ − x
=

{m(x′)−m(Xi′)}+
{∑i′−1

j=i m(Xj+1)−m(Xj)
}
− {m(x)−m(Xi)}

x′ − x

=
m(x′)−m(Xi′)

x′ −Xi′

{
x′ −Xi′

x′ − x

}

+

i′−1∑
j=i

m(Xj+1)−m(Xj)

Xj+1 −Xj

{
Xj+1 −Xj

x′ − x

}

+
x−m(Xi)

x−Xi

{
x−Xi

x′ − x

}
=

m(Xi′+1)−m(Xi′)

Xi′+1 −Xi′

{
x′ −Xi′

x′ − x

}

+

i′−1∑
j=i

m(Xj+1)−m(Xj)

Xj+1 −Xj

{
Xj+1 −Xj

x′ − x

}

+
m(Xi+1)−m(Xi)

Xi+1 −Xi

{
x−Xi

x′ − x

}

What’s going on in the last equality? The red and blue slopes are the same in
each expression. Because µ̂ is piecewise-linear, the slope of µ̂ between Xi and x
is the same as the slope of µ̂ between Xi and Xi+1.

Now observe that the ratios in curly braces that multiply these slopes are
non-negative weights that sum to one, so our secant slope is a weighted average
of these segment slopes. And it follows, by Hölder’s inequality, that the absolute
value of this weighted average can be no larger than that of the largest individual
slope. That is, the Lipschitz constant ρLip(m) of a piecewise linear curve with
breaks at X1 . . . Xn like (6) is no larger than its restriction’s Lipschitz constant
ρLip|X (m|X ).

Furthermore, ρLip|X (m|X ) is no larger than ρLip(m) for any function m, as
the former is the maximum of the same function of pairs x, x′ over a smaller
set of pairs. Summarizing, these piecewise linear curves satisfy ρLip|X (m|X ) ≤
ρLip(m) ≤ ρLip|X (m|X ) and therefore ρLip(m) = ρLip|X (m|X ).

Why the Piecewise-Linear Extension of µ̂|X (3) solves (2).
What we’ve just shown tells us that the piecewise-linear extension of µ̂|X gives

us something feasible for (2): the constraint ρLip|X (µ̂|X ) ≤ B imposed by (3)
implies that its piecewise-linear extension (6) satisfies the constraint ρLip(µ̂) ≤ B
in (2). And if it weren’t optimal, there’d have to be some feasible function m with
ρTV (m) ≤ B and therefore ρTV |X (m|X ) ≤ B, because ρTV | X (m|X ) ≤ ρTV (m)
for all m, with mean squared error strictly less than µ̂. This would imply that
µ̂|X does not solve (3), so there can exist no such m.
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2.4 Optimized Fitting
We can speed up our fitting code by simplifying our set of constraints by hand.
In particular, I claim that you get the same solution if you impose the constraint
|m(Xi) − m(Xj)|/|Xi − Xj | ≤ B for adjacent points. That is, if the points
X1 . . . Xn are sorted in increasing order, it’s equivalent to impose the constraint
for the pairs (i, j = i+ 1).

Exercise 10 Prove it! Then implement it and check that your solution agrees
with the one you got before using the all-pairs constraint. Include the proof as
your solution. No need to turn in code, but you’ll want this faster implementation
later.

Tip. The proof should be easy. Use the weighted-average idea from the last
exercise.

Solution 9 Consider any pair of observations Xi, Xi′ sorted so Xi < Xi′ . From
the previous part, taking x = Xi and x′ = Xi′ , we know that the slope absolute
value |m(Xi′)−m(Xi)|/|Xi′ −Xi| of the segment between these endpoints is no
larger than the largest of the slope absolute values |m(Xj+1)−m(Xj)|/|Xj+1−Xj |
of the segments between adjacent points between them. It follows that the max-
imum ρLip|X (m) of the absolute slope between all pairs Xi, Xj is no larger than
the largest of the absolute slopes for adjacent points. And, as it clearly cannot
be smaller, it follows that two maxima are equal and the resulting constraints
equivalent.

lipreg = function(X, Y, B=1) {
# Step 0.
# We check that the inputs satisfy our assumptions.
stopifnot(length(X) == length(Y))
input = list(X=X, Y=Y)
n = length(X)
# and find the unique elements of X and the inverse mapping
unique.X = invert.unique(X)

# Step 1.
# We tell CVXR we're thinking about a vector of unknowns m in R^p.
m = Variable(length(unique.X$elements))
# and permute and duplicate these into a vector mX with n elements in correspondence with (X_1,Y_1)...(X_n,Y_n)
mX = m[unique.X$inverse]

# Step 2.
# We tell CVXR that we're interested in mean squared error.
mse = sum((Y - mX)^2 / n)

# Step 3.
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# We specify our constraints.
uX = X[unique.X$elements]
constraints = list( abs(diff(m)) <= B * diff(uX) )

# Step 4.
# We ask CVXR to minimize mean squared error subject to our constraints.
# And we ask for vector mu.hat that does it.
solved = solve(Problem(Minimize(mse), constraints))
mu.hat = solved$getValue(m)

# Step 5: a little boilerplate to make it idiomatic R.
# 1. we record the unique levels of X and mu.hat, in correspondence and sorted in increasing order of X, in a list. We also record the input data.
# 2. we assign that list a class, so R knows predict should delegate to predict.lipreg
# 3. we return the list
model = list(X = X[unique.X$elements], mu.hat = mu.hat, B=B, input = input)
attr(model, "class") = "lipreg"
model

}

3 Rates of Convergence
Now we’ve got three nonparametric regression models: monotone curves, bounded
variation curves, and lipschitz curves. To keep things simple, we’ll be working
with data sampled around one signal: µ(x) = x. That is, we’ll work with inde-
pendent and identically distributed observations (X1, Y1) . . . (Xn, Yn) where Xi

is drawn from uniform distribution on [0, 1] and Yi = µ(Xi) + εi for εi drawn
independently from the normal distribution with mean zero and standard devi-
ation σ = .5.

Tip. What we’re doing here is taking what we did at the end of the conver-
gence rates lab, simplifying it by using only one signal instead of four, and then
adding two new regression models. Use the lab’s solution as a starting point.

Exercise 11 Draw a sample of size N = 1600 from this distribution. To get
samples of sizes n = {25, 50, 100, 200, 400, 800, 1600}, use the first 25, 50, etc.
observations.

At all of these sample sizes, fit a line, an increasing curve, and bounded
variation and lipschitz curves with budgets B = 1. Calculate sample MSE
‖µ̂−µ‖2L2(Pn) and population MSE ‖µ̂−µ‖2L2(P ) for each. Repeat this ten times
and average the results to get estimates of expected sample MSE and expected
population MSE at each sample size n. Include plots of these as a function of n
as your solution.

Tip. This can be slow for larger samples. Try it out for samples of size 25 . . . 400
before adding in n = 800 and n = 1600.
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Figure 1: Expected sample (left) and population (right) MSE
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Figure 2: Expected sample MSE (thin lines) and a predictions (thick lines)
based on our rate estimates

Solution 10

Let’s try to summarize these plots by rates of convergence.

Exercise 12 For each of your four regression models, use nls to fit a curve
of the form m(n) = αn−β to RMSE =

√
MSE where MSE is your estimate

of expected population mean squared error from the last exercise. Repeat for
expected sample mean squared error.

Plot the resulting predictions of MSE, m̂(n)2, on top of your actual MSE
curves from the the previous exercise to check their accuracy. Include these plots
and report these rates of convergence β̂ as your solution. Briefly comment on
what you see, too.

Solution 11 For both sample and population RMSE, the rates I’m estimating
are somewhere between n−1/3 and n−1/2 for everything but lines and n−1/2 for
lines.
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error.measure model a b
population bv 0.70 0.38
population lines 0.81 0.51
population lip 0.82 0.47
population monotone 0.81 0.36
sample bv 0.66 0.37
sample lines 0.77 0.50
sample lip 0.72 0.45
sample monotone 0.67 0.34

◦ The n−1/2 rate for lines is something you may have seen in a previous
class. If you haven’t, you’ve probably seen it for horizontal lines, since the
least squares prediction µ̂(x) in that model is the constant Ȳ which has
standard deviation σ/

√
n.

◦ Later in the semester, we’ll prove that the rates for the other models are,
in fact, n−1/3 or better. To get a more precise characterization of these
rates using this simulation-based method, we’d want to use a larger range
of sample sizes, and for that we’d want faster code.

Our actual error curves do agree well with the predictions we get based on these
rates.

At most sample sizes the errors follow the pattern

bounded variation > monotone > lipschitz > lines.

We’d expect some of these comparisons. The signal is in all of these models, so
lower error boils down to less overfitting. Our lipschitz model is contained in
our bounded variation model, so we’d expect it to overfit less and therefore have
lower error. And our lines model, while not contained in any of the others, is in
a sense much smaller, so I’d expect the least overfitting and therefore the lowest
error there.

If this pattern wasn’t in line with your expectations, no worries. Later on
in the semester, we’ll see some theory that’ll tell us what’s going on here pretty
clearly.
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Notes
1I’m going to stop writing µ̂|X all the time from here on. Since we’re talking about an

extension, we know that µ̂(Xi) = µ̂|X (Xi), so I’ll write that to reduce notational clutter.
2The ‘so’ clause here assumes x and x′ are inside the range of the data. What we can say

generally, and what’s relevant, is that slope of µ̂ between x and Xi is the slope of the segment
connecting (Xi,m(Xi)) to (Xi+1,m(Xi+1)).
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