
Smooth Regression

January 30, 2025

In this homework, we’ll briefly review Bounded Variation Regression and
then explore Lipschitz Regression, another form of smooth regression. We will
focus on the one-dimensional case, although it extends very naturally to higher
dimensions. Then we’ll look into rates of convergence, comparing this new
method to the stuff we’ve been using.

1 Review of Bounded Variation Regression
In class, we talked about using least squares regression to fit a function of
bounded total variation. If we are fitting µ(x) = E[Yi | Xi = x] for covariates
Xi ∈ [0, 1], this estimator is

µ̂ = argmin
m

ρTV (m)≤B

1

n

n∑
i=1

{Yi −m(Xi)}2 where

ρTV (m) =

∫ 1

0

|m′(x)|dx for differentiable m

= sup
increasing sequences

x1≤x2≤...≤xk

x1...xk∈[0,1]

∑
j

|m(xj+1)−m(xj)| generally .

(1)

The set of functions we’re optimizing over, those with ρTV (m) ≤ B, is a set of
functions that doesn’t vary too much in total. It does, however, include both
functions that vary slowly throughout the interval [0, 1] and those that vary
quickly for a small part of it.

Exercise 1 To get a sense of what the constraint ρTV (m) ≤ B means, calculate
ρTV (m) for the following functions on [0, 1]. These are repeats from class.

1. m(x) = x

2. m(x) = x2

3. m(x) = ex

4. m(x) = sin(πx)

1

5. m(x) =

{
0 if x < 1

1 if x = 1

6. m(x) = sin(1/x)

Exercise 2 For the following, which are a bit subtler, give an upper bound on
ρTV (m). If it’s infinite, explain why.

1. m(x) = x sin(1/x)

2. m(x) = x2 sin(1/x)

3. m(x) = x3/2 sin(1/x)

Hint: It might be hard to find the upper bound by looking at the graph of
some of these functions. Instead, find the derivative and a corresponding upper
bound for it, if possible. Your upper bound doesn’t have to be tight. When you
are bounding a sum, use the triangle inequality by adding the upper bound for
each term.

2 Lipschitz Regression
In some cases, it may be implausible that µ(x) varies quickly anywhere. In
that case, we may prefer to fit a Lipschitz function, for example by solving the
following least squares problem.

µ̂ = argmin
m

ρLip(m)≤B

1

n

n∑
i=1

{Yi −m(Xi)}2 where

ρLip(m) = sup
x∈[0,1]

|m′(x)| for differentiable m

= sup
x1,x2∈[0,1]

x1 6=x2

|m(x2)−m(x1)|
|x2 − x1|

generally .

(2)

We call ρLip(m) the Lipschitz constant of the function m. Let’s interpret the
general definition visually. It’s a maximum of the absolute value of the slope of
the functions’s secants.

Equivalence. Our definition for differentiable functions is equivalent because
(i) derivatives are included in the set of slopes we’re maximizing over, as they
are the slopes of tangents, which are just very short secants (ii) every slope in
this set is equal to a derivative, as the mean value theorem tells us that the
slope of the secant drawn from x = a to x = b is equal to the derivative of the
function at some point between a and b.

2

2.1 Finding Lipschitz Constants
Exercise 3 To get a sense of what this new type of constraint ρLip(m) ≤ B
means, calculate ρLip(m) for the examples from Exercise 1. Bound it or explain
why it’s infinite for the examples from Exercise 2. Is ρTV (m) ≤ ρLip(m) for all
of these examples? If so, either prove that it’s true for all functions m on [0, 1]
or find a counterexample.

2.2 Fitting the Lipschitz Model
As usual, we’ll start by solving for a function µ̂|X on the sample X = {X1 . . . Xn},
then extend it to the real line. Just like in the bounded variation lab, we’ll
translate our seminorm ρLip into a seminorm on functions m : X → R simply
by replacing the ’for all ... ∈ R’ (or [0, 1]) with a ’for all ... ∈ X ’. Like this.

µ̂|X = argmin
m

ρLip|X (m)≤B

1

n

n∑
i=1

{Yi −m(Xi)}2 where

ρLip|X (m) = sup
x 6=x′∈X

|m(x)−m(x′)|
|x− x′|

= sup
pairs i,j∈1...n
with Xi 6=Xj

|m(Xi)−m(Xj)|
|Xi −Xj |

.

(3)

This is something we can handle. This depends on the values of m(x) only at the
observed data points x ∈ {X1 . . . Xn}, so we can implement it as an optimization
over a vector ~m ∈ Rn with the interpretation that ~mi = m(Xi). The constraint
ρLip|X (m) ≤ B can be expressed as a set of constraints on ~mi − ~mj for pairs
i, j.

Exercise 4 Rewrite this problem as a constrained optimization over the vector
~m. Try to do it so what you’ve written translates straightforwardly into CVXR
code.

Tip. There is a smaller set of constraints that implies the full set in (3). We’ll
get there in Exercise 10. For now, use the full set, like we did until the section
‘Optional Exercise: Optimization’ in the monotone regression lab.

Tip. If you want to keep things simple, go ahead and assume that X1 . . . Xn

take on n distinct values, just like we did at the beginning of the monotone
regression lab. If you want more generally applicable code, take a look at
how we use invert.unique in the monotone regression lab to handle duplicate
values.

3

Tip. CVXR seems to be having some trouble with this one if we use division
in our constraint, so don’t. To write your constraint without division, observe
that the following set of constraints are equivalent: (i) maxi≤n|ui/vi| ≤ B, (ii)
|ui|/|vi| ≤ B for all i ∈ 1 . . . n, and (iii) |ui| ≤ B|vi| for all i ∈ 1 . . . n.

Exercise 5 Implement that optimization in R. That is, write an R func-
tion lipreg analogous to monotonereg from the monotone regression lab that
solves (3). Then, from the six distributions described below, sample n = 100
observations (X1, Y1) . . . (Xn, Yn) and use your code to calculate predictions
µ̂(X1) . . . µ̂(X1) based on the solution to (3) with variation bound B = 1. Each
time, plot your predictions on top of the data, i.e., make a single scatter plot
showing both your predictions (Xi, µ̂(Xi)) and your observations (Xi, Yi). Turn
in those six plots, labeling each with the signal used, as your solution to this
exercise.

We’ll sample observations around six signals.

1. A step, µ(x) = 1(x >= .5).

2. A line, µ(x) = x.

3. A vee, µ(x) = (x− .5)1(x ≥ .5).

4. A sine, µ(x) = sin(πx).

5. A damped rapidly oscillating curve, µ(x) = x sin(1/x).

6. A more-damped rapidly-oscillating curve, µ(x) = x3/2 sin(1/x).

For each, we’ll work with independent and identically distributed observations
(X1, Y1) . . . (Xn, Yn) where Xi is drawn from the uniform distribution on [0, 1]
and Yi = µ(Xi) + εi for εi drawn from the normal distribution with mean zero
and standard deviation σ = 1/10.

Exercise 6 Revisit the curves µ̂ you fit in the last exercise. For each, answer
these questions.

1. Does it fit the data?

2. If not, what — if anything — could we do to fit the data better?

Then, if there is something you can do, do it and include the resulting plot.

2.3 Filling in the gaps
At this point, you have an estimator µ̂|X that minimizes squared error among
the functions m satisfying ρLip|X (m) ≤ B. This lets us plot some isolated points.
But we want a complete curve µ̂(x) for x ∈ [0, 1] that satisfies ρLip(µ̂) ≤ B, and
we want it to be the best-fitting such curve, i.e., we want the solution to (2).

4

To do this, we’ll use a piecewise-linear extension of µ̂|X . That is, having
sorted Xi into increasing order, we will define µ̂(x) everywhere on [X1, Xn] by
drawing line segments between successive points {Xi, µ̂(Xi)} and {Xi+1, µ̂(Xi+1)},
and extend the leftmost and rightmost segment to fill the intervals [0, X1] and
[Xn, 1].1 This gives us a piecewise-linear solution to (3). First, we’ll implement
it. Then we’ll verify that it is, in fact, a solution to (2).

Exercise 7 Briefly explain why piecewise-constant extension would not give us
a solution to (2). A sentence or a sketch should do.

Tip. Think about Exercise 3.

2.3.1 Implementation

Exercise 8 Write out a formula for the piecewise-linear curve µ̂(x) in terms
of µ̂(X1) . . . µ̂(Xn). Then implement it and add the curve µ̂(x) for x ∈ [0, 1] to
your plots from the last exercise.

Tip. For coding a piecewise linear function, try to modify the function predict.piecewise.constant
from the bounded variation lab.

2.3.2 Verification

Exercise 9 Consider any pair x < x′. Prove that for any piecewise-linear func-
tion m with breaks at X1 . . . Xn, the secant slope {m(x′)−m(x)}/(x′−x) between
these points is a weighted average of the slopes {m(Xj+1)−m(Xj)}/(Xj+1−Xj)
of the segments that lie between them. Briefly explain why this implies that our
piecewise-linear solution µ̂ satisfies ρLip(µ̂) = ρLip|X (µ̂|X) and why this implies
that µ̂ solves (2).

Tip. Break the ‘explain’ part of this down into feasibility and optimality, like
we did in the bounded variation regression lab.

2.4 Optimized Fitting
We can speed up our fitting code by simplifying our set of constraints by hand.
In particular, I claim that you get the same solution if you impose the constraint
|m(Xi) − m(Xj)|/|Xi − Xj | ≤ B for adjacent points. That is, if the points
X1 . . . Xn are sorted in increasing order, it’s equivalent to impose the constraint
for the pairs (i, j = i+ 1).

Exercise 10 Prove it! Then implement it and check that your solution agrees
with the one you got before using the all-pairs constraint. Include the proof as
your solution. No need to turn in code, but you’ll want this faster implementation
later.

5

Tip. The proof should be easy. Use the weighted-average idea from the last
exercise.

3 Rates of Convergence
Now we’ve got three nonparametric regression models: monotone curves, bounded
variation curves, and lipschitz curves. To keep things simple, we’ll be working
with data sampled around one signal: µ(x) = x. That is, we’ll work with inde-
pendent and identically distributed observations (X1, Y1) . . . (Xn, Yn) where Xi

is drawn from uniform distribution on [0, 1] and Yi = µ(Xi) + εi for εi drawn
independently from the normal distribution with mean zero and standard devi-
ation σ = .5.

Tip. What we’re doing here is taking what we did at the end of the conver-
gence rates lab, simplifying it by using only one signal instead of four, and then
adding two new regression models. Use the lab’s solution as a starting point.

Exercise 11 Draw a sample of size N = 1600 from this distribution. To get
samples of sizes n = {25, 50, 100, 200, 400, 800, 1600}, use the first 25, 50, etc.
observations.

At all of these sample sizes, fit a line, an increasing curve, and bounded
variation and lipschitz curves with budgets B = 1. Calculate sample MSE
‖µ̂−µ‖2L2(Pn) and population MSE ‖µ̂−µ‖2L2(P) for each. Repeat this ten times
and average the results to get estimates of expected sample MSE and expected
population MSE at each sample size n. Include plots of these as a function of n
as your solution.

Tip. This can be slow for larger samples. Try it out for samples of size 25 . . . 400
before adding in n = 800 and n = 1600.

Let’s try to summarize these plots by rates of convergence.

Exercise 12 For each of your four regression models, use nls to fit a curve
of the form m(n) = αn−β to RMSE =

√
MSE where MSE is your estimate

of expected population mean squared error from the last exercise. Repeat for
expected sample mean squared error.

Plot the resulting predictions of MSE, m̂(n)2, on top of your actual MSE
curves from the the previous exercise to check their accuracy. Include these plots
and report these rates of convergence β̂ as your solution. Briefly comment on
what you see, too.

6

Notes
1I’m going to stop writing µ̂|X all the time from here on. Since we’re talking about an

extension, we know that µ̂(Xi) = µ̂|X (Xi), so I’ll write that to reduce notational clutter.

7

	Review of Bounded Variation Regression
	Lipschitz Regression
	Finding Lipschitz Constants
	Fitting the Lipschitz Model
	Filling in the gaps
	Implementation
	Verification

	Optimized Fitting

	Rates of Convergence

