
Sobolev Spaces and Finite-Dimensional
Approximation

April 15, 2025

Please do exercises 3 and 4 by class-time on Thursday, 2/27. The rest are
due the following Tuesday, 3/4, at midnight.

1 Introduction
In this homework, we’ll look at a measure of the size of a Sobolev-type model.
A model like this.1

M =

m(x) =
∑
j

mjφj(x) :
∑
j

λjm
2
j ≤ 1


where 〈φj , φk〉 =

{
1 if j = k

0 otherwise
and λj ≥ 0.

(1)

We’ll do this is abstract terms, leaving both the inner product 〈·, ·〉 and the
corresponding orthonormal basis φ0, φ1, . . . unspecified. So that we have a con-
crete example to think about, we’ll think about what our results mean in the
context of the first Sobolev regression model we talk about this semester, for
which we use the inner product 〈·, ·〉L2

, the basis functions φj(x) =
√
2 cos(jπx),

and λj = (πj)2.
What do we mean by the size of a model? When we talk about linear models,

we tend to think about dimension: the number of basis functions we need to
span all the functions in the model. We need two basis functions for lines, four
basis functions for cubic polynomials, etc. In this homework, we’ll think about
a way to generalize that idea so we can get a meaningful measure of the size
of infinite-dimensional models. To do that, we’ll think about finite-dimensional
approximations. We’ll think about how high-dimensional a vector space has to
be to include an ε-approximation to every function m in the model. That is,
about the smallest number N for which there exists a basis b0 . . . bN−1 that, for
every function m ∈ M, spans some function mε = m0b0+ . . .+mN−1bN−1 with
‖m−mε‖ ≤ ε
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Because it’s a bit easier, we’ll work with the ‘inverse’ of this measure. By
that, I mean that we’ll think about the optimal level ε of (uniform) approxima-
tion accuracy we can get using functions in any N -dimensional basis b0 . . . bN−1.
This is called the Kolmogorov N-width of the model. Here’s its definition.2

wN (M) = min
basis functions

b0...bN−1

max
m∈M

min
coefficients
m1...mn

∥∥∥∥∥∥m−
N−1∑
j=0

mjbj

∥∥∥∥∥∥ (2)

To make sense of this definition, let’s go step by step from the inside out.

1. Start by thinking about some basis b0 . . . bN−1 and some function m ∈ M
that we want to approximate. Imagine finding mε, the best approximation
to m spanned by that basis. The inner min in (2) is the approximation
error ‖mε −m‖.

2. Keeping that basis in mind, imagine finding the function m in our model
M that’s hardest to approximate. The one for which our approximation
error is largest. The max in (2) is our error in approximating that function.

3. Finally, imagine finding the best basis. The one for which this worst-case
approximation error is smallest. The outer min in (2), i.e. the N-width
of the model, is the best worst-case approximation error we can get using
any N -dimensional basis.

In this homework, we’ll calculate the Kolmogorov N -width of the abstract
Sobolev-type model M. We’ll take it step by step, from the inside out. And
we won’t really ‘minimize’ over basis functions. Instead, we’ll start out with
a convenient guess, calculate the worst-case approximation error when we use
that basis, then show that we can’t do any better.

1.1 Warm Up
Before we get into the real stuff, let’s take a minute to think a bit more about
what the definition (2) means and why it is what it is.

1.1.1 Why Uniform Approximation?

Why are we considering the (best) worst-case approximation error for functions
in a model M? Why not error for one particular function m? That’d be the
Kolmogorov N -width of the set {m} containing only that function. And it’s not
very interesting. For N ≥ 1, it’s zero.

Exercise 1 Explain why, if model M = {m} contains only one function m,
its Kolmogorov N -width wN (M) is 0 for N ≥ 1. A sentence or two should be
enough.

Solution 1 The model {m} itself is one-dimensional. We get zero approxima-
tion error for N ≥ 1 using any basis b0 . . . bN−1 with b0 = m.
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This is an instance of a more general phenomenon. For example, the best
estimator for a specific signal µ is the one that completely ignores the data and
just spits out µ. It’s not a useful one. If we want to talk about real estimators,
we need to be thinking about at least two signals.

1.1.2 What We’re Really Optimizing Over.

What we’re optimizing over in (2) isn’t really sets of N basis functions. It’s
N -dimensional subspaces. Prove it!

Exercise 2 Prove that if b0 . . . bN−1 and b̃0 . . . b̃N−1 have the same span V, then
we get same worst-case approximation error for any set M, i.e., that

max
m∈M

min
coefficients
m1...mn

∥∥∥∥∥∥m−
N−1∑
j=0

mjbj

∥∥∥∥∥∥ = max
m∈M

min
coefficients
m̃1...m̃n

∥∥∥∥∥∥m−
N−1∑
j=0

m̃j b̃j

∥∥∥∥∥∥
Tip. Recall that the span of a set of vectors b0 . . . bN−1 is the set of all linear
combinations of them. span b0 . . . bN−1 = V means that every linear combination∑N−1

j=0 ajbj of these vectors is some vector v ∈ V and that every vector v ∈ V
can be written as a linear combination like that.

Solution 2 The inner min is over functions spanned by the basis b0 . . . bN−1,
so if b̃0 . . . b̃N−1 has the same span, the inner min will have the same value.

One implication is that whenever we’re trying to calculate the Kolmogorov
N -width of a set M, we can consider only orthonormal bases b0 . . . bN−1 (i.e.
bases with 〈bi, bj〉 = 1 if i = j and 0 otherwise). That makes our calculations
easier and it doesn’t change the minimum we get, since every N -dimensional
subspace V has an orthonormal basis.

1.2 Conventions
1.3 The Norm
In the definition of the Kolmogorov N -width above, the norm ‖·‖ wasn’t speci-
fied. It’s conventional to use the two-norm ‖·‖L2

, but the definition (2) makes
sense for other norms. In this homework, we’ll use the norm induced by the
inner product in our model’s description, i.e. the norm ‖m‖ =

√
〈m,m〉

where 〈·, ·〉 is the inner product for which 〈φj , φk〉 = 1 if j = k and 0 otherwise
in (1). When we’re thinking about the Sobolev regression model from class, this
aligns with convention.

Keep in mind that the results we’ll prove are specific to the case that the
norms in (1) and (2) are the same. That’s not as limiting as it sounds because if
we have two norms that are related, e.g. norms ‖·‖a and ‖·‖b with ‖u‖a ≤ c‖u‖b
for some constant c, Kolmogorov N -widths based on these norms will be related
too.
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1.3.1 The Index Set

In the model description (1), the set of values that j takes on as we count out
the terms in our sum wasn’t specified. We call this our index set and j itself our
index. People usually use the natural numbers 0, 1, 2, . . . when talking about
these models in abstract terms. That’s what we’ll do in this homework. When
we want to talk about a finite-dimensional model spanned by K basis functions
φ0, . . . , φK−1, we can think of our index set as being the numbers 0, 1, . . . ,K−1
for some K. Or, if we want to stick to the natural numbers, we can imagine
we actually have infinitely many basis functions, but λj = ∞ for j ≥ K so
we“aren’t allowed to use” the rest of them.

We’ll order our terms so that λj is increasing, i.e. λ0 ≤ λ1 ≤ . . .. When you
think about the Sobolev model from class, this means our first term corresponds
to the lowest frequency ‘cosine’ φ0(x) = cos(0πx) = 1; our second to the next
lowest frequency one φ1(x) = cos(πx), etc. Our model includes smaller and
smaller multiples of these basis functions. The largest multiple of φj it includes
is λ

−1/2
j φj , which has norm ‖λ−1/2

j φj‖ = λ
−1/2
j ‖φj‖ = λ

−1/2
j .

Often, when we’re talking about a concrete model, it’s convenient to sum
over other index sets. For example, when we’re talking about regression models
with covariates x ∈ R2, we might want to think of j as pair (j1, j2) and our
sum as being over all pairs of natural numbers (j1, j2). This is equivalent to
summing over the natural numbers because there are ’as many’ natural numbers
as there are pairs of natural numbers. Because we can order these pairs and
count them out as the ’first’, ’second’, ’third’, etc. pair, we could using natural
numbers instead of pairs to ‘name’ the terms in our sum, but there’s no reason
to do that. It’d just be a more awkward way of naming the same things in that
concrete case.

Don’t worry about the sums
∑

j mjφj converging. When we’re using
a version of this model where λj → ∞ as j → ∞, it does. It’s easy to show that
‖
∑∞

j=K mjφj‖2 → 0 as K → ∞. If you’re interested, try it! You may want to
do Exercise 4 first.

If it makes you more comfortable, focus on the finite-dimensional
case, i.e. act as if every sum you see is over the numbers 0, 1, . . . ,K − 1 for
some K. That way, there’s no need to worry about convergence and you can
use matrix/vector notation without it feeling like you’re doing something weird.

2 Approximation using the Basis φ0, φ1, . . .

In this section, we’ll talk about how well we can approximate functions in using
the basis φ0, φ1, . . .. This isn’t just a step towards calculating the Kolmogorov
N -width of these models. It’s something that comes up when we want to actually
use these models in practice. For example, when we go to solve a least squares
problem like this.
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µ̂ = argmin
m∈M

n∑
i=1

{Yi −m(Xi)}2

for M =

m(x) =

∞∑
j=0

mjφj(x) :

∞∑
j=0

λjm
2
j ≤ 1

.

(3)

If this were a finite sum, we could just type it up in notation CVXR under-
stands and ask for the solution. And infinite sums, we can do the same thing,
but using truncated-series approximations to the functions in M. Like this.

µ̂N = argmin
m∈MN

n∑
i=1

{Yi −m(Xi)}2

for MN =

m(x) =

N−1∑
j=0

mjφj(x) :

N−1∑
j=0

λjm
2
j ≤ 1

.

(4)

Intuitively, if MN contains a good approximation to µ̂, then µ̂N will be
a good approximation to µ̂, and that’ll be the case if MN contains a good
approximation to every function in M. It’s not quite true that if MN contains
an ε-approximation to every function in M, then µ̂N will be an ε-approximation
to µ̂, but that’s usually a pretty good approximation. We’ll act as if it were true
for now and worry about the ‘pretty good approximation’ later in the semester
when we have the right tools.

Before we go ahead and write the code in lab, there are a couple things we
should work out. First, we should check that using truncated-series approxima-
tions like this is actually a reasonable thing to do. Second, we should figure out
how many terms we need to include to get a good approximation.

Exercise 3 Let m(x) =
∑∞

j=0 mjφj(x) be an arbitrary function in the span of
our basis functions φ0, φ1, . . .. Prove that truncating this series after N terms
gives the best approximation to m in the span of the first N basis functions, i.e.
that

m0 . . .mN−1 = argmin
a0...aN−1

∥∥∥∥∥∥m−
N−1∑
j=0

ajφj

∥∥∥∥∥∥
2

.

What is the error ‖m−
∑N−1

j=0 mjφj‖ of this approximation?

Solution 3 See the beginning of the Lab on Implementing Sobolev Regression.

Now that we’ve got a formula for the error of the best approximation to a
specific function m, we can maximize it over the functions m in our model M
to get the worst-case approximation error. To make sure you stay on track, I’ll
tell you what it is. It’s λ

−1/2
N . Prove it!
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Exercise 4 Prove that λ−1/2
N = maxm∈M mina0...aN−1

‖m−
∑N−1

j=0 ajφj‖.
Then ‘invert’ this to work out how many you how many terms you need to

include so the set MN contains an ε-approximation to every function in M,
i.e., find the smallest N for which maxm∈M mina0...aN−1

‖m−
∑N−1

j=0 ajφj‖ ≤ ε.
Report this in abstract terms, as something we can calculate using the sequence
λ0 ≤ λ1 ≤ . . ., and in concrete terms for the Sobolev model from class, where
λj = (πj)2.
Tip. Keep in mind that

∑
j m

2
j =

∑
j m

2
jλj/λj. Look over the inner product

spaces homework if you’re stuck.

Solution 4 See the beginning of the Lab on Implementing Sobolev Regression.

Now, if we ignore the ‘later in the semester problem’ mentioned above, we’ve
got everything we need to implement Sobolev regression. If we can decide how
accurately we want to calculate µ̂, we know how to approximate our model well
enough to get that accuracy. One remaining question is whether we’re doing
this the best way. That is, if we’re going to throw some finite-dimensional
approximation to our model into CVXR, is MN the best one to use? In the
next section, we’ll show that it is.

This isn’t the kind of thing we always need to know in practice. It’s ok to
do things sub-optimally and long as we’re ok with how well we’re doing them.
But knowing that we’re using the best possible N -dimensional basis means,
for example, that if we’re at the limit of what our computer can handle and
still not happy with our accuracy, we shouldn’t waste time trying to do better
using this approach based on finite-dimensional uniform approximation. There
are other ways to do computation in models like this. One approach, based
on something called the kernel trick, isn’t that much harder to implement and
can be a lot faster, but it requires that we do a bit more pen-and-paper math.
Or, if we’re lucky, that somebody else has already done it for the version of
the model (1) we’re using. We’re not going to have time to cover the kernel
trick this semester, but I have covered it in previous versions of this class that
emphasized different topics, so I can give you slides and exercises on the topic
that use familiar-enough terms if you’re interested.

3 The Optimality of the Basis φ0 . . . φN−1.
In this section, we’ll show that we can’t improve on the uniform error bound
we got in Exercise 4 by using any other N -dimensional approximation to our
model. Throughout, when we write b0 . . . bN−1, we will think of these as the
first N vectors in an orthonormal basis b0, b1, . . . that spans the same vector
space as φ0, φ1, . . .. This is ‘free’, or in more standard math language, without
loss of generality. We lose nothing by assuming that b0 . . . bN−1 orthonormal,
as we saw in Exercise 2, the uniform approximation error we get is the same for
any two bases that span the same vector space. We lose nothing by thinking of
b0 . . . bN−1 as the first N vectors in an orthonormal basis that contains φ0, φ1, . . .
in its span, as we can extend our basis by adding vectors bN , bN+1, . . . until we
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get (an orthonormal) one that contains φ0, φ1, . . .. And we’ll see momentarily in
Exercise 6 that, given any such basis b0, b1, . . ., we can find another one b̃0, b̃1, . . .
that’s also contained in the span of φ0, φ1, . . . and gives use N -dimensional
approximations that are at least as good, so we lose nothing by focusing bases
like b̃0, b̃1, . . . in the first place.

3.1 Approximating a Single Function
We’ll start by tackling a generalization of Exercise 3.

Exercise 5 Let m be an arbitrary function and b0 . . . bN−1 be the first N
functions in an orthonormal basis b0, b1, . . . with m ∈ span b0 . . . bN−1 (i.e.
a sequence b0, b1, . . . with 〈bi, bj〉 = 1 if i = j and 0 otherwise for which
m =

∑∞
j=0 ajbj for some coefficients a0, a1, . . .). Prove that the best approx-

imation to m in the span of b0 . . . bN−1, in the sense that ‖m − mN‖ is as
small as possible, is mN =

∑N−1
j=0 〈m, bj〉bj and that the squared error of this

approximation is ‖mN −m‖2 =
∑

j≥N 〈m, bj〉2.

Solution 5 This is the same argument as in Exercise 3 in different notation. In
particular, with bj replacing φj and 〈m, bj〉 replacing mj. Here’s the argument.

To start, observe that m =
∑∞

j=0〈m, bj〉bj. We know that because the coeffi-
cients aj = 〈m, bj〉 are the only ones for which, for every basis function bk, we
have 〈bk,

∑∞
j=0 ajbj〉 = ak equal to 〈m, bk〉. For any coefficients a0 . . . aN−1,∥∥∥∥∥∥m−

N−1∑
j=0

ajbj

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∞∑
j=0

〈m, bj〉bj −
N−1∑
j=0

ajbj

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
N−1∑
j=0

(〈m, bj〉 − aj)bj +

∞∑
j=N

〈m, bj〉bj

∥∥∥∥∥∥
2

We can simplify this by observing that, because our basis functions are orthonor-
mal, the squared norm of a linear combination of them is just the sum of the
squared coefficients.∥∥∥∥∥∥

∞∑
j=0

ajbj

∥∥∥∥∥∥
2

=

〈 ∞∑
j=0

ajbj ,

∞∑
k=0

akbk

〉

=

∞∑
j=0

∞∑
k=0

ajak 〈bj , bk〉

=

∞∑
j=0

a2j because 〈bj , bk〉 =

{
1 if j = k

0 otherwise
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Applying this to our approximation error, we get this.∥∥∥∥∥∥m−
N−1∑
j=0

ajbj

∥∥∥∥∥∥
2

=

N−1∑
j=0

(〈m, bj〉 − aj)
2 +

∞∑
j=N

〈m, bj〉2

This is minimized when the first sum is zero, i.e. when aj = 〈m, bj〉 for j =
0 . . . N − 1.

Exercise 6 Consider a basis b0 . . . bN−1 like the one in Exercise 5 and let m be
an arbitrary function that is in both (i) the span of φ0, φ1, . . . and (ii) the span
of b0, b1, . . .. Let bφj =

∑
j〈bj , φk〉φk be the projection of the basis function bj

onto the span of φ0, φ1, . . . and b̃j = bφj /‖b
φ
j ‖ be a normalized version of bφj or,

if bφj = 0, let b̃j = 0. Prove that, if m̃N is the best approximation to m in the
span of b̃0 . . . b̃N−1, then ‖m̃N −m‖ ≤ ‖mN −m‖.
Tip. a2 − b2 = (a− b)2 + 2b(a− b) for any a and b. When a and b are 〈m, bj〉
and 〈m, b̃j〉 respectively, what do you know about a− b?

This sequence b̃0, b̃1, . . . isn’t necessarily a basis, but the only thing standing
in the way is the possibility that some of them are zero, i.e. the possibility that
〈bj , φk〉 = 0 for some j. Throw out the zero vectors and you’ve got a basis. And
because the first N vectors in that basis include b̃0 . . . b̃N−1, they’ll also give
you approximation error that’s as good or better than the first N vectors in the
original basis b0, b1, . . ..

3.2 Uniform Approximation
Now that we’ve got a formula for the approximation error for a single function
m, and we’ve established that we can restrict our attention to orthonormal bases
b0, b1, . . . with exactly the same span as φ0, φ1, . . ., let’s move on to the worst-
case approximation error. What we’re going to do is start with our formula for
‖mN − m‖2 from Exercise 5, plug in the series expansion m =

∑
j mjφj , and

interpret the maximization over these coefficients as an eigenvalue problem. To
do this, we use the ‘variational characterization’ of the largest eigenvalue of a
symmetric matrix A.

max
‖x‖2≤1

xTAx is the largest eigenvalue of the symmetric matrix A. (5)

More generally, making the substitution y = Sx for some invertible matrix S,

max
‖Sx‖2≤1

xTAx is the largest eigenvalue of the symmetric matrix S−1AS−1.

(6)
Where does this symmetric matrix come from in our approximation problem?

Let’s plug in our series expansion m =
∑

j mjφj into our approximation error
formula and look.
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max
m∈M

min
a0...aN−1

‖m−
N−1∑
j=0

ajbj‖2

= max
m∈M

∑
k≥N

〈m, bk〉2

= max
sequences m0,m1,...

with
∑

i λim
2
i≤1

∑
k≥N

〈∑
i

miφi, bk

〉〈∑
j

mjφj , bk

〉

= max
sequences m0,m1,...

with
∑

i λim
2
i≤1

∑
i

∑
j

mimj

∑
k≥N

BikBjk for Bik = 〈φi, bk〉.

(7)

Take a look at the inner sum. If you’re in the habit of writing out matrix
products elementwise, i.e. writing (BA)ij =

∑
k BikAkj , it might jump out

at you as something like the product BBT =
∑

k BikBjk. It’s not quite that
because we’re summing over k ≥ N , but we can include a diagonal ’selector
matrix’ S to throw out the terms we don’t want.

max
m∈M

min
a0...aN−1

∥∥∥∥∥∥m−
N−1∑
j=0

ajbj

∥∥∥∥∥∥
2

= max
sequences m0,m1,...

with
∑

i λim
2
i≤1

∑
i

∑
j

mimj

∑
k

BikSkkBjk

for Bik = 〈φi, bk〉

and Sk` =

{
1 for k = ` ≥ N

0 otherwise
(8)

At this point, let’s translate things into matrix/vector notation. To avoid
technicalities, we’ll make a few simplifying assumptions from this point on.

1. We’ll assume we’re working with a finite-dimensional model, so all the
sums we’re working with are over j ∈ 0 . . .K for some K. We’ll get
bounds that don’t depend on K, so addressing the infinite-dimensional
case amounts to taking a K → ∞ limit.

2. We’ll assume our λj are strictly positive and strictly increasing, i.e. that
0 < λ0 < λ1 < . . .. This basically saves us the trouble of special-casing
zeros and ties in our calculations. Once we’ve got an argument that works
for λj like this, it’s easy to add those cases in so it works for any positive
increasing sequence 0 ≤ λ0 ≤ λ1 ≤ . . ..

In terms of the ‘change of basis‘ matrix B and ‘selector matrix’ S from (8)
and a ‘diagonal matrix’ Λ with elements Λii = λi, we can write our maximal
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approximation error like this.3

max
m∈M

min
a0...aN−1

‖m−
N−1∑
j=0

ajbj‖2 = max
‖Λ1/2m‖2≤1

mTBSNBTm

= the largest eigenvalue of Λ−1/2BSNBTΛ−1/2

= the largest eigenvalue of SNBTΛ−1BSN

where Λij =

{
λi for i = j

0 otherwise
.

(9)
The last step, in which we turn our matrix product ‘inside out’, is one we

haven’t yet justified.

Exercise 7 Suppose the matrix ATA has an eigenvalue λ with corresponding
eigenvector v. Show that λ is also an eigenvalue of AAT . Then explain how this
justifies the last step in our calculation of the maximal approximation error.
Tip. What’s AATAv? What’s SNSN?

Solution 7 If ATA has an eigenvalue λ with corresponding eigenvector v, then
λ is also an eigenvalue of AAT with corresponding eigenvector Av.

(AAT )(Av) = A(ATAv) = A(λv) = λAv.

Applying this mechanically to A = Λ1/2BSN and observing that AT = (SN )TBT (Λ−1/2)T =
SNBTΛ−1/2 due to symmetry of SN and Λ1/2, this says that these two matrices
have the same eigenvalues:

ATA = SNBTΛ−1/2Λ−1/2BSN = SNBTΛ−1BSN

AAT = Λ−1/2BSNSNBTΛ−1/2 = Λ−1/2BTSNBΛ−1/2 (check that SNSN = SN ).

Since they have the same eigenvalues, they have the same largest eigenvalue.

So far, this has been a lot of reading. There were a lot of little steps that
are about as mechanical as adding 2+2 if you’re used to this stuff, but can stop
you in your tracks if you’re not. I’ve written them up for you to make sure you
got a chance to tackle this last step, which calls for a little more thought.

Exercise 8 Prove that, if b0 . . . bK is an orthonormal basis that spans the same
vector space as φ0 . . . φK , then maxm∈M mina0...aN−1

‖m−
∑N−1

j=0 ajbj‖2 ≥ λ−1
N .

Briefly explain why this, in combination with Exercise 4, implies that our model’s
Kolmogorov N -width wN (M) is λ−1

N .
Tip. If you can find some unit-length vector x for which xTSNBTΛ−1BSNx ≥
λ−1
N , you’re done. Why?

Tip. What do you know about the change of basis matrix B? If Bi· and B·j
are its ith row and jth column, what are 〈Bi·, Bk·〉 and 〈B·j , B·`〉?

3Here Λ1/2 can be any symmetric matrix with Λ1/2Λ1/2 = Λ, but we may as well make it
the diagonal matrix with elements Λ

1/2
ii .
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