
Vector Spaces

January 30, 2025

1 Introduction
Getting used to thinking of functions as vectors, conceptually and nota-
tionally, takes a bit of practice. But as we move forward, it’ll be very useful.
This won’t be the most fun set of exercises we’ll do, but it should pay off by
making things smooth later on. And this is all standard notation, so it may be
helpful in other contexts.

Throughout this problem set, we’ll be thinking about a vector space V. For
our purposes, a vector space is a set of things that we can add together and
multiply by scalars. Vectors spaces have a zero element. Here are the examples
that’ll be important for us.

◦ R, the real numbers.

◦ Rn, the n-dimensional vectors with real elements.

◦ zero element: the zero vector ~0 ∈ Rn

◦ addition: for x, y ∈ Rn, x+ y ∈ Rn

◦ scalar multiplication: for a ∈ R, x ∈ Rn, ax ∈ Rn

◦ Functions from some set to R. We add and scale these pointwise

◦ zero element: the function f(x) = 0 that’s zero for all x.
◦ addition: f + g is a function with (f + g)(x) = f(x) + g(x);
◦ multiplication: for α ∈ R, αg is a function with (αf)(x) = αf(x).

You may remember from high school the formula sin2(x) + cos2(x) = 1.
You can think of this as a statement involving an addition of real numbers: for
any x, sin(x)2 + cos(x)

2
= 1. But you can also think of it as one involving an

addition of functions, sin2 +cos2 = 1, which says that if you add the function
f(x) = sin(x)

2 and the function g(x) = cos(x)
2, you get the constant function

h(x) = 1. Below I’ve illustrated a version of this that’s a bit easier to make sense
of visually: the formula (sin2+cos2)/2 = 1/2. Looking at a single dot illustrates
addition of real numbers, looking at all the dots at once illustrates addition of
vectors, and looking between the dots illustrates addition of functions.
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Exercise 1 Suppose we have a vector space F of differentiable functions from
Rn to R. The set of gradients of these functions, which we might call ∇F , is
{∇f : f ∈ F}. Is this a vector space? If not, explain why. If so, explain how
to add, subtract, and scale and describe the zero element.

2 Norms
A seminorm ρ on a vector space is a function that is absolutely homogeneous
and satisfies a triangle inequality. That is, it’s a function for which

ρ(αv) = |α|ρ(v) and ρ(u+ v) ≤ ρ(u) + ρ(v).

Some seminorms are norms, which have the additional property that ρ(v) = 0
only if v = 0. We tend to write something like ‖v‖ instead of ρ(v) to indicate
that we’ve got a norm and not a seminorm.1 Here are some examples.

◦ On real numbers, i.e., vectors v ∈ R, we have the magnitude |v|.

◦ On finite dimensional vectors v ∈ Rn , there are a couple we use a lot.

◦ ‖v‖2 :=
√∑n

i=1|vi|2, the two-norm.
◦ ‖v‖1 :=

∑n
i=1|vi|, the one-norm.

◦ ‖v‖∞ := maxi∈1...n|vi|, the infinity norm.

We can, in fact, apply these to infinite sequences v = v1, v2, v3, . . . as well.
To do that, we just take n = ∞ above, i.e., we define ‖v‖2 :=

√∑∞
i=1 v

2
i ,

‖v‖1 :=
∑∞

i=1|vi|, and ‖v‖∞ := maxi∈1...∞|vi|.

Exercise 2 For the following vectors v, what are ‖v‖1, ‖v‖2, and ‖v‖∞?1
2
3

 and

2
2
2

 .
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Optional: what about for the infinite sequence 1/1, 1/2, 1/3, 1/4, 1/5, . . .?
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Exercise 3 It can be helpful to think about norms in physical terms. Imagine
you’re in a city laid out like a grid, like Manhattan. I’ve drawn a grid for
you above to help you visualize what’s going on. You’re standing on one street
corner a = (xa, ya) and going to another corner b = (xb, yb). Here, in some
order, are interpretations of the one, two, and infinity norms ‖a− b‖1, ‖a− b‖2,
and ‖a− b‖∞.

a. The distance between a and b as the crow flies.

b. The distance you’d have to walk to get from a and b, i.e., distance when
you can only move along the grid lines.

c. The longest distance you could walk along any one grid line (street) without
going too far in some direction.

Match each description to a norm.

Exercise 4 If we have a norm ‖·‖, we say the set B = {x : ‖x‖ ≤ 1} is its
unit ball. For each of the norms ‖·‖1, ‖·‖2, and ‖·‖∞ on R2, draw its unit ball.

Use the grids below. I’ve given you four grids, so you have one to spare. Use
that one to draw all 3 on top of one another.
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Tip. To get started, work out where the boundary of the unit ball hits the x
and y axes and then the diagonal lines y = ±x. Then make up a few more lines
and think about where they hit the ball’s boundary, too.
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2.1 Norms for Functions
For vector spaces of functions, v we tend to use analogous definitions, replacing
sums with integrals. For example, for functions from the interval [0, 1] to R, we
use these.

◦ ‖v‖L2
:=

√∫ 1

0
|v(x)|2, the two-norm.

◦ ‖v‖L1 :=
∫ 1

0
|v(x)|, the one-norm.

More generally, for functions from any set X to R, we tend to define these
analogously using integrals over probability distributions on that set. That is, if
P is the probability distribution of some random variable X ∈ X , then

◦ ‖v‖L2(P) :=
√
E [v(X)2], the population two-norm.

◦ ‖v‖L1(P) := E [|v(X)|], the population one-norm.
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Exercise 5 Our definitions of ‖v‖L2 and ‖v‖L1 correspond to the case that P
is the uniform distribution on [0, 1]. Explain why.

In the exercises below, we work with the following functions.

v1(x) = x2

v2(x) =

{
1 if x = 0

0 otherwise

v3(x) = ex

(1)

Exercise 6 For each of these functions v, suppose they are defined from [0, 1] to
R, what are ‖v‖L1 and ‖v‖L2? And when P is the standard normal distribution,
i.e. the distribution of random variable X that is normal with mean zero and
variance one, what are ‖v‖L1(P ) and ‖v‖L2(P )? What if P is the distribution of
a random variable X that is normal with mean one and variance one?

If v3 is giving you trouble, don’t worry about it; just do v1 and v2.

Hint In your calculations, you’ll need the values of the moments EXk and
the so-called moment generating function EetX for normal random variables.
For a normal random variable X with mean µ and variance σ2,

E
[
etX

]
= eµt+σ2t2/2

E [X] = µ

E
[
X2

]
= µ2 + σ2

E
[
X3

]
= µ3 + 3µσ3

E
[
X4

]
= µ4 + 6µ2σ2 + 3σ4.

I got this from the wikipedia article on the normal distribution, where you’ll
find a lot more information, none of which you’ll need in this assignment. You
might find it faster to calculate all the norms associated with one distribution
and then move on to the second distribution.

For good measure, here are two more seminorms we see a fair amount.

◦ sdP (v) :=

√
E[(v(X)− E[v(X)])

2
], the population standard deviation.

◦ On differentiable functions v(x) on [0, 1], the total variation ρTV (v) =∫ 1

0
|v′(x)|dx.

Exercise 7 For the functions v1,v2, and v3 from Exercise 6, what is sdP (v)
when P is the standard normal distribution? What about when P is the distri-
bution of a random variable X that is normal with mean one and variance one?
And what is ρTV (v)?
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This last question doesn’t totally make sense for v2, as it isn’t differentiable.
But say what you think it should be anyway and briefly explain, in terms you’ll
be able to understand when you read it a few weeks from now, why you said
what you said. We’ll address this in our lecture on bounded variation regression,
when I’ll give a more general definition of the seminorm ρTV that will apply to
v2, and we’ll talk about why that definition is what it is and how to think about
it.

Optional reading The corresponding generalization of the infinity norm is
a little trickier and we won’t really need it. In case you’re interested, I put
it in the Appendix A, along with a few related exercises. This may be a bit
much if you haven’t had real analysis, which is by no means required for you to
understand what we’re going to do in this class.

2.2 Norms associated with samples
When we’re working with a sample X1 . . . Xn, sometimes we abuse notation by
writing ‖v‖2 for a function v, meaning

√∑n
i=1|v(Xi)|2. When we do this, we’re

interpreting v as the vector [v(X1) . . . v(Xn)] of values it takes on the sample.
We can do the same with the one and infinity norms. Up to a scale factor, we
can also think of these as norms associated with the empirical distribution Pn:
the distribution of a random variable X that takes on each value X1 . . . Xn with
probability 1/n.

‖v‖L2(Pn) =

√√√√ 1

n

n∑
i=1

|v(Xi)|2 =
‖v‖2√

n
the sample two-norm

‖v‖L1(Pn) =
1

n

n∑
i=1

|v(Xi)| =
‖v‖1
n

, the sample one-norm

‖v‖L∞(Pn) = max
i≤n

|v(Xi)| = ‖v‖∞ the sample infinity norm.

Similarly, the sample standard deviation is the population standard deviation
associated with the empirical distribution.

The advantage of these norms based on the empirical distribution, relative
to the analogous vector norm, is that they don’t tend to vary much with sample
size. For example, if we have a function v(x) and a sample X1 . . . Xn, then ‖v‖1
will be a sum |v(X1)|+ . . .+ |v(Xn)| of n values of |v(x)| and therefore tends to
be roughly proportional to n, whereas ‖v‖L1(Pn) is the average of these n values
and therefore doesn’t tend to grow with n. Same deal with ‖v‖22 and ‖v‖2L2(Pn)

;
the first is the sum of n values of |v(x)|2 and the second is the average of them.

Below we see two sampled versions of the function f(x) = sinx, one of size
10 and the other of size 100. The vector norm ‖v‖1 for is 5.671 for sample size
n = 10 and 63.02 for sample size n = 100 On the other hand, the sample norm
‖v‖L1(Pn) is 0.567 for sample size n = 10 and 0.63 for sample size n = 100.
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If we’re thinking of X1 . . . Xn as a random sample, then these are random
norms, and it makes sense to talk about the probability distribution of the
norms ‖v‖L2(Pn), ‖v‖L2(Pn), and ‖v‖L∞(Pn) for a function v. In particular, if
each observation Xi is an independent draw from the distribution P, then we
can relate them to the corresponding population norms. Let’s do that.

Exercise 8 Show the following.

1. E
[
‖v‖L1(Pn)

]
= ‖v‖L1(P).

2. E
[
‖v‖2L2(Pn)

]
= ‖v‖2L2(P)

Optional. There’s an analogous exercise for the infinity norm in the appendix.
If you want to explore infinity norms a bit more, it a shot. But don’t feel uneasy
skipping it. It’s harder than the others and we won’t need the result.
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2.3 Checking that our examples are seminorms
Exercise 9 Show that the population one-norm, the sample infinity-norm, and
the total variation are seminorms. That is, show that they are absolutely ho-
mogeneous and satisfy a triangle inequality. Explain why this implies that the
one-norm and infinity-norm on finite-dimensional vectors are also seminorms.

You may assume that the magnitude (absolute value) is a seminorm on R.
Next week, we’ll prove it.

It may be helpful to know that if the function u is always smaller than the
function v, then the average of u(X) will be smaller than v(X) no matter what
the distribution of X is, i.e., if u(x) ≤ v(x) for all x, then E[u(X)] ≤ E[v(X)]
for all random variables X.

Hint You will need to think about the relationship between the maximum of
two functions and their maximum of their sum. It may help to think about
where that sum is maximized, i.e., the x at which f(x) + g(x) is largest, and
where the individual functions are maximized. Take a look at the graph below,
in which the purple curve is the sum of the red and blue curves.
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2.4 Properties of Seminorms
2.4.1 Zero at Zero.

Seminorms are zero at zero, i.e., they satisfy ρ(0) = 0.

Exercise 10 Prove it. If it takes more than one sentence, you’re doing it wrong.

2.4.2 Nonnegativity.

Seminorms are non-negative.

Exercise 11 Prove it. This one shouldn’t be much longer.
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2.4.3 Seminorms that aren’t norms.

The population standard deviation and total variation are seminorms, but they
are not norms.

Exercise 12 Explain why.

Hint By definition, the norm of a function is zero if and only if the function
is the zero element, which is the function that’s always zero f(x) = 0, ∀x ∈ R.
Can you think of other functions whose population standard deviation or total
variation is zero?
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A Generalization of the infinity norm
Here’s your optional reading and exercises on the infinity norm. We could,
of course, take ‖v‖L∞ = maxx∈[0,1]|v(x)|. But that would lead to a problem.
Consider the function v2 we’ve been working with: the discontinuous function
v that’s zero except at x = 0, where it’s one. Using this definition, we get
‖v‖L∞ = 1. But if we look at the L1 and L2 norms, or any other norms defined
in terms of integrals, we’ll get zero. Integrals are about the area under the
curve, so they don’t care what v looks like on a set with zero area, like a single
point. What we want is something that’s like the maximum, but doesn’t care
about that either. Here, in the general case, is what we wind up with. If P is
the probability distribution of some random variable X , then

‖v‖L∞(P ) := inf {x ≥ 0 : P (|v(X)| ≤ x) = 1} .

And we define ‖v‖L∞ this way taking P to be the uniform distribution on [0, 1].
Informally, this is the largest value of |v(X)| that might actually occur when X
is a random variable with distribution P . And it’s smaller than the largest value
outright, maxx|v(x)|, so often even when being formal, you often won’t need to
think about the subleties. If you’re not comfortable with what inf means, don’t
worry about this stuff, and either skip the following exercises or take a guess at
them using the informal definition.

This one is a version of Exercise 6.

Exercise 13 (Optional). For the functions v1,v2,and v3 from Exercise 6,
calculate ‖v‖L∞ and ‖v‖L∞(P ) where P is the standard normal distribution.

This one is a version of Exercise 8

Exercise 14 (Optional). Show that ‖v‖L∞(Pn) ≤ ‖v‖L∞(P ) with probability
one.

Here’s a hint. It’s equivalent to say that the probability that ‖v‖L∞(Pn) >
‖v‖L∞(P ) is zero. And the probability that |v(Xi)| > ‖v‖L∞(P ) for any i in
1 . . . n is no larger than the sum of the probabilities that |v(Xi)| > ‖v‖L∞(P )

for all i in 1 . . . n. That’s a consequence of the Union Bound.
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Notes
1Don’t worry too much about whether a seminorm is a norm. In many vector spaces, there

are many vectors that are almost zero, and some seminorms ρ that we tend to think of as
norms aren’t because ρ(v) = 0 for these almost-zero vectors. We still tend to write ‖v‖ instead
of ρ(v) in this case.

12


	Introduction
	Norms
	Norms for Functions
	Norms associated with samples
	Checking that our examples are seminorms
	Properties of Seminorms
	Zero at Zero.
	Nonnegativity.
	Seminorms that aren't norms.


	Generalization of the infinity norm

