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Review



A Fictionalized RDD Example

• Question. Are smaller classes better for 5th graders?
• Data. A state caps class sizes at 40.

• When there are x ≤ 40 5th graders enrolled in a school, they run one class of size x.
• When there are x > 40, they run two classes of average size x/2.
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This is a fake-data version of a study of Angrist and Lavy [1999]. The state is Israel.

• It has been simplified to make our discussion easier.
• Real schools sometimes had more than 80 5th-graders enrolled.
• And they didn’t follow this cap perfectly.
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A Fictionalized RDD Example

• Question. Are smaller classes better for 5th graders?
• Data. A state caps class sizes at 40.

• When there are x ≤ 40 5th graders enrolled in a school, they run one class of size x.
• When there are x > 40, they run two classes of average size x/2.
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We can use this to estimate the average effect of having 20 vs. 40 students/class.

effect = µ(40+)− µ(40−) where

µ(x) = E[avg. test scorei | enrolled 5th gradersi = x].

All we have to do is estimate µ(x) just to the left and to the right of 40.
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The Simple Approach
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êffect = µ̂right(40)− µ̂left(40) = 0.59

where

µ̂left = argmin
m∈M

∑
i:Xi≤40

{Yi − m(Xi)}2 and µ̂right = argmin
m∈M

∑
i:Xi>40

{Yi − m(Xi)}2.

for M = {m(x) = b0 + b1x : b ∈ R2}
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The Simple Approach
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êffect = µ̂right(40)− µ̂left(40) = 0.99

where

µ̂left = argmin
m∈M

∑
i:Xi≤40

{Yi − m(Xi)}2 and µ̂right = argmin
m∈M

∑
i:Xi>40

{Yi − m(Xi)}2.

for M = {decreasing m}
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The Simple Approach
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êffect = µ̂right(40)− µ̂left(40) = 0.56

where

µ̂left = argmin
m∈M

∑
i:Xi≤40

{Yi − m(Xi)}2 and µ̂right = argmin
m∈M

∑
i:Xi>40

{Yi − m(Xi)}2.

for M = {m :

∫
|m′(x)| ≤ B} where B = 1.5
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The Bounded Variation Model
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µ̂ = argmin
m∈M

1
n

n∑
i=1

{Yi − m(Xi)}2 where M = {m :

∫
|m′(x)| ≤ B}.

This is too vague to actually implement.

1. We haven’t specified the domain we’re integrating over.
2. Nor have we said what this means for non-differentiable functions.

Let’s fix that.
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The integration domain is easy. It’s a matter of convention.
We shift and scale our Xi into the unit interval [0, 1]. That’s our integration domain.
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Xi ∈ (0, 40] x → x/40
−−−−−−→

X ′
i ∈ (0, 1]

What’s nice about this is that it’s an average.∫ 1

0
|m′(x)|dx = E|m′(X̃)| for X̃ uniformly distributed in [0, 1]

Averages are easy to think about and compare to other things.

E|m′(X̃)| ≤
√

Em′(X̃)2 ≤ max
x

|m′(x)|
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The integration domain is easy. It’s a matter of convention.
We shift and scale our Xi into the unit interval [0, 1]. That’s our integration domain.
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Xi ∈ (40, 80] x → (x − 40)/40
−−−−−−−−−−−−→

X̃i ∈ (0, 1]

What’s nice about this is that it’s an average.∫ 1

0
|m′(x)|dx = E|m′(X̃)| for X̃ uniformly distributed in [0, 1]

Averages are easy to think about and compare to other things.

E|m′(X̃)| ≤
√

Em′(X̃)2 ≤ max
x

|m′(x)|
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The nondifferentiable thing is subtler.
Think about this problem—an infinite-data noiseless regression.

µ̂ = argmin
m∈M

∫ 1

0
{µ(x)−m(x)}2 where M =

{
differentiable m :

∫ 1

0
|m′(x)| ≤ B

}
.
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0.75

1.00

0.00 0.25 0.50 0.75 1.00

Here’s µ.
What is the solution µ̂?
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The nondifferentiable thing is subtler.
Think about this problem—an infinite-data noiseless regression.

µ̂ = argmin
m∈M

∫ 1

0
{µ(x)−m(x)}2 where M =

{
differentiable m :

∫ 1

0
|m′(x)| ≤ B

}
.
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It’s not this function m.
We can find a better fit.
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The nondifferentiable thing is subtler.
Think about this problem—an infinite-data noiseless regression.

µ̂ = argmin
m∈M

∫ 1

0
{µ(x)−m(x)}2 where M =

{
differentiable m :

∫ 1

0
|m′(x)| ≤ B

}
.
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This is better, but we can keep going.
We can get arbitrarily close.

µ = lim
k

mk for mk ∈ M.
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The nondifferentiable thing is subtler.
Think about this problem—an infinite-data noiseless regression.

µ̂ = argmin
m∈M

∫ 1

0
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mk(x) =
1

1 + e−k(x−.5) 6
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The nondifferentiable thing is subtler.
Think about this problem—an infinite-data noiseless regression.

µ̂ = argmin
m∈M

∫ 1

0
{µ(x)−m(x)}2 where M =

{
differentiable m :

∫ 1

0
|m′(x)| ≤ B

}
.
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1.00

0.00 0.25 0.50 0.75 1.00

The only reasonable answer is µ̂ = µ

But µ isn’t in our modelM.
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The argmin µ̂ doesn’t exist.

µ̂ = argmin
m∈M

∫ 1

0
{µ(x)−m(x)}2 where M =

{
differentiable m :

∫ 1

0
|m′(x)| ≤ B

}
.

Mean squared error does not have a minimum in this model.

But being pedantic doesn’t get us far. We know µ should be the solution.
We need a way to define our model so that it can be.

In a sense, we don’t need to change much.

µ̂ = argmin
m∈M

∫ 1

0
{µ(x)− m(x)}2 where M =

{
m :

∫ 1

0
|m′(x)| ≤ B

}
.

All we’ve got to do is define the integral
∫ 1

0 |m′(x)| for non-differentiable functions.
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We know what we want from our definition.

∫ 1

0
|m′(x)|dx = ?
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0.75

1.00

0.00 0.25 0.50 0.75 1.00

where

mk(x).

The rest is calculus.
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We know what we want from our definition.

∫ 1

0
|m′(x)|dx ≈

∫ 1

0
|m′

k(x)|dx

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

where

mk(x) ≈ m(x).

The rest is calculus.
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We know what we want from our definition.

∫ 1

0
|m′(x)|dx = lim

k

∫ 1

0
|m′

k(x)|dx

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

where

mk(x) → m(x).

The rest is calculus.
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If we have a dense partition 0 = x1 < . . . < xk = 1 in [0, 1], then:

∫ 1

0
|m′(x)| ≈

k∑
j=1

∣∣m′(xj)
∣∣(xj+1 − xj) a sum approximates our integral

≈
k∑

j=1

∣∣∣∣m(xj+1)− m(xj)

xj+1 − xj

∣∣∣∣(xj+1 − xj) a slope approximates our derivative

=
k∑

j=1
|m(xj+1)− m(xj)| and we’ve got no calculus stuff left.

If we take denser and denser partitions (maxj xj+1 − xj → 0), then this is exact.

So we’ve got a definition.

∫ 1

0
|m′(x)|dx = lim

k∑
j=1

|m(xj+1)− m(xj)| as max
j

xj+1 − xj → 0.
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∫ 1

0
|m′(x)|dx = lim

k∑
j=1

|m(xj+1)− m(xj)| as max
j

xj+1 − xj → 0.

This definition is a bit complicated. It involves as weird kind of limit.
You’d have to think about whether that limit exists. So we use another.

∫ 1

0
|m′(x)|dx = sup

finite partitions
0=x1<...<xk=1

k∑
j=1

|m(xj+1)− m(xj)|.

We’ve replaced the limit over denser partitions with a supremum over all partitions.

Is that ok? Are these the same?
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sup
finite partitions

0=x0<...<xk=1

k∑
j=1

|m(xj+1)−m(xj)|
?
= lim

k∑
j=1

|m(xj+1)−m(xj)| as max
j

xj+1−xj → 0.

I’m not being totally rigorous here. But yes, they’re the same.
The sum can only get bigger if we refine our partition by adding intermediate points.

|m(xj+1)− m(xj)| = |m(xj+1)− m(x̃) + m(x̃)− m(xj)|

≤ |m(xj+1)− m(x̃)|+ |m(x̃)− m(xj)| for x̃ ∈ (xj , xj+1).

That’s the triangle inequality in action.
And it means that our supremum is always a limit for increasingly dense partitions.

It doesn’t however, mean we can’t stop at some point.
There may be a finite partition that gives us the maximal sum.

Thinking about these partitions can help us understand our ‘ integral’.
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The Bounded Variation Model

M = {m : ρTV (m) ≤ B}

where

ρTV (m) =

∫ 1

0
|m′(x)|dx for differentiable m

= sup
finite partitions

0=x0<...<xk=1

k∑
j=1

|m(xj+1)− m(xj)| in complete generality .

It’s a ball in the total variation seminorm ρTV .
How do we know that it’s a seminorm?
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Understanding Total Variation
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Here’s a monotone regression estimator µ̂.
What is its total variation ρTV (µ̂)?

It’s µ̂(0)− µ̂(1) ≈ 1.25.

k∑
j=1

|µ̂(xj+1)− µ̂(xj)| =
k∑

j=1
µ̂(xj)− µ̂(xj+1) = µ̂(x0)− µ̂(xk).

For a monotone function, it doesn’t matter what partition we sum over.
The sum is always the same.
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Here’s another estimator µ̂. It’s a local polynomial regression estimator.
What is its total variation ρTV (µ̂)?

It’s |µ̂(0)− µ̂(x?)|+ |µ̂(x?)− µ̂(1)| ≈ 1.75 for x? = argmaxx µ̂(x).

k∑
j=1

|µ̂(xj+1)− µ̂(xj)| =
j?−1∑
j=1

µ̂(xj+1)− µ̂(xj) +
k∑

j=j?

µ̂(xj)− µ̂(xj+1)

for xj? = x? because m is increasing on [0, x?] and decreasing on [x?, 1].

As long as our partition contains all local extrema, the sum is always the same.
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Here’s another estimator µ̂. It’s a local polynomial regression estimator.
What is its total variation ρTV (µ̂)?

It’s |µ̂(0)− µ̂(x?)|+ |µ̂(x?)− µ̂(1)| ≈ 1.75 for x? = argmaxx µ̂(x).

k∑
j=1

|µ̂(xj+1)− µ̂(xj)| =
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j=1

µ̂(xj+1)− µ̂(xj) +
k∑

j=j?

µ̂(xj)− µ̂(xj+1)

for xj? = x? because m is increasing on [0, x?] and decreasing on [x?, 1].

As long as our partition contains all local extrema, the sum is always the same. 14



Properties

ρTV (m) = |m(1)− m(0)| if m is monotone (increasing or decreasing) on [0, 1]

=
∑

j
|m(xj+1)− m(xj)| if m is monotone on each interval [xj , xj+1].
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Try these!

What is ρTV (m) for …

1. m(x) = x
2. m(x) = x2

3. m(x) = ex

4. m(x) = sin(πx)

5. m(x) =
{

0 if x < 1
1 if x = 1

6. m(x) = sin(1/x)

We’ll look at some more interesting cases in this week’s homework.
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Why the
Bounded Variation Model
is Useful



How does a constraint on total variation keep us from overfitting?

Hint.

• A monotonicity constraint helps because noise jumps up and down.

• To fit noise would violate monotonicity.

Answer.

• A TV constraint helps because noise jumps up and down a lot.

• To fit it, we’d need a curve m with huge total variation ρTV (m).
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To fit perfectly, we need to increase our variation budget with sample size. Fast.

1.5

2.0

2.5

0 0.25 0.5 0.75 1

B=12.5
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To fit perfectly, we need to increase our variation budget with sample size. Fast.
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To fit perfectly, we need to increase our variation budget with sample size. Fast.
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To fit perfectly, we need to increase our variation budget with sample size. Fast.
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To fit perfectly, we need to increase our variation budget with sample size. Fast.
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To fit the overall trend, we don’t.
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It takes a similar increase to fit pure gaussian noise.
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Yi ∼ N(0, 1)
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It takes a similar increase to fit pure gaussian noise.
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It takes a similar increase to fit pure gaussian noise.
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It takes a similar increase to fit pure gaussian noise.
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It takes a similar increase to fit pure gaussian noise.

−2

0

2

4

0 0.25 0.5 0.75 1

B=487.6

Yi ∼ N(0, 1)
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And we can find that there’s no trend if we keep our budget small.
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Same deal for fitting random signs ±1. Coin flips.
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Yi = ±1 each with probability 1/2
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Same deal for fitting random signs ±1. Coin flips.
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Same deal for fitting random signs ±1. Coin flips.
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Same deal for fitting random signs ±1. Coin flips.
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Same deal for fitting random signs ±1. Coin flips.
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Yi = ±1 each with probability 1/2
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The price of noise.

If a curve fits noise perfectly, i.e. if m(Xi) = εi , then what do we know about ρTV (m)?

ρTV (m) ≥
n−1∑
i=1

|m(Xi+1)− m(Xi)| =
n−1∑
i=1

|εi+1 − εi |.

Why ≥ and not =?

The observations are just one partition, so all this tells us is a lower bound.
We didn’t say what this curve does between the observations.
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B=67.7

0 0.25 0.5 0.75 1

B=34.8

It might jump for no reason. It might not.
If it doesn’t, this is an equality.
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The price of noise. Coin flip edition.

What if our noise εi is a coin flip.

εi = ±1 each with probability 1/2.

How much total variation would we need for a perfect fit?
First, translate this into a question about the noise.

What is
n−1∑
i=1

|εi+1 − εi | ?
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The price of noise. Coin flip edition.

What if our noise εi is a coin flip.

εi = ±1 each with probability 1/2.

How much total variation would we need for a perfect fit?
First, translate this into a question about the noise.

What is
n−1∑
i=1

|εi+1 − εi | ?

In the worst case, it’s (n − 1)× 2.

• We’d get that if we flipped sign every time.

• Heads, Tails, Heads, Tails, …

• |1 − −1|+ |−1 − 1|+ |1 −−1|+ . . . (n − 1 times).

• Not very random-looking. Not very likely.
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The price of noise. Coin flip edition.

What if our noise εi is a coin flip.

εi = ±1 each with probability 1/2.

How much total variation would we need for a perfect fit?
First, translate this into a question about the noise.

What is
n−1∑
i=1

|εi+1 − εi | ?

In the average case, it’s half that.

|εi+1 − εi | =
{

0 with probability 1/2
2 with probability 1/2

and therefore

E|εi+1 − εi | =
0 + 2

2
= 1 and E

n−1∑
i=1

|εi+1 − εi | = (n − 1)× 1.
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The price of noise. Gaussian edition.

What if our noise εi is standard normal?

i.e. what is
n−1∑
i=1

|εi+1 − εi | for εi ∼ N(0, 1) ?

Is it bigger or smaller?

In the average case, it’s (n − 1)×
√

2E|εi | ≈ (n − 1)× 1.1.

|εi+1 − εi | ∼ |N(0, 2)| =
√

2|N(0, 1)|

and therefore

E|εi+1 − εi | =
√

2E|εi |
=
√

2
π

and E

n−1∑
i=1

|εi+1 − εi | = (n − 1)×
√

2E|εi |.
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We don’t tend to use variation budgets anywhere near that big.
If µ were wildly discontinous, we might be a bit stuck even if we knew it exactly.

But we do have to choose a budget somehow.
And it we go too small, that’s not good either.

1.0

1.5

2.0

2.5

0 0.25 0.5 0.75 1

B=0.5

In lab, we’ll talk about how to choose it automatically.
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BV Regression in Action.
Maybe you’ve heard of it. Or something like it.



Total Variation Denoising is BV Regression in 2D.

People use it all the time.
This image, by MAL, is licensed under CC BY-SA 3.0.
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Total Variation Denoising is BV Regression in 2D.

They used it to capture the first-ever image of a black hole.
We’ll talk about and implement it in a few weeks.
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The Highly Adaptive Lasso is a generalization of BV regression
that works well even with high dimensional data.

It’s popular with one of the biggest causal inference groups out there.
We’ll touch on this, too.

28



Random forests are a computationally-efficient approximation to BV regression.

x1 x2

z

• Forests, too, are constant except for jumps.

• TV regression uses the jumps that minimize mean squared error
subject to a constraint on the curve’s total variation ρTV (µ̂).

• This is fast enough in 1D or 2D, but can get slow high dimensions.

• Random forests use a greedy algorithm that tries to minimize MSE
with constraints that are similar in intention and effect.
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Variations



There’s more than one way to be a smooth curve.

1. Often, we think the curve we’re looking for shouldn’t jump around all the time.

2. Sometimes, we think it shouldn’t jump at all.
And that it shouldn’t even get close to making big jumps.

3. Maybe we’ll even think it shouldn’t get steep at all.

These are all different ways to be smooth. Each is stronger than the last.

max
x∈[0,1]

|m′(x)| ≤ B

Lipschitz smooth (3)

=⇒

√∫ 1

0
|m′(x)|2 ≤ B

Sobolev smooth (2)

=⇒
∫ 1

0
|m′(x)| ≤ B

Bounded Variation (1)

.

In many ways these kinds of models are similar, but they all have their quirks.
Which you use makes a difference, especially for behavior near the data’s edges.

• We’ll start talking about Lipschitz smoothness in this week’s homework.

• And we’ll add Sobolev smoothness to the mix later.
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