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Notation

Today, we’re using the sample mean inner product and sample mean squared error.
To keep notation simple, we’re going to write this without any special subscripts.

〈u, v〉 = 〈u, v〉L2(Pn) =
1
n

n∑
i=1

u(Xi)v(Xi)

‖v‖2 = ‖v‖2
L2(Pn)

=
1
n

n∑
i=1

v(Xi)
2.

Keep in mind that for a gaussian vector g ∼ N(0, In×n) and any function v,

〈g, v〉 =
1
n

n∑
i=1

gi v(Xi) ∼ N
(

0,
‖v‖2

n

)
.

We’ll also writeMs as a shorthand for what we’ve calledMs − µ? before.

Ms = {m − µ? : ‖m − µ?‖ ≤ s}.

And we’ll ignore some constant factors: an . bn means an ≤ cbn for some constant c.
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Review



What determines our error bounds

It’s the gaussian width of neighborhoods of µ? in our model.

M

Ms

μ

M\Ms

μ̂

M

Ms
μ⋆
μ

M\Ms

ˆ

μ

‖µ̂− µ?‖ < s × σ

{
1 +

2Σn

δn

}
w.p. 1 − δ if

s2

2
≥ w(Ms).

Ms = {m − µ? ∈ M : ‖m − µ?‖ ≤ s}.

So what we need is a way to bound the gaussian width of these neighborhoods.
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Finite Models

• In finite models, bounding width is easy.

• It’s the maximum of gaussians with standard deviation ≤ s/
√

n.

E〈g,m − µ?〉2 =
‖m − µ?‖2

n
.

• We can bound this via union bound. It’s down to counting the curves in the
model.

w(Ms) . s

√
log(K)

n
ifM contains K curves m

all with ‖m − µ?‖L2(Pn) ≤ s.

• We may be overcounting. This bounds the max of K totally different gaussians.

• That’s the case in which it’s largest, so if there’s correlation we’re overcounting.

• And this definitely won’t work for models with infinitely many curves.

• We’ll need to take advantage of this correlation to tackle infinite models.
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Counting Curves in Infinite Models

Gaussian width is the mean of the maximum of a set of gaussians.

w(Ms) = E max
v∈Ms

〈g, v〉 for g ∼ N(0, In×n).

And the difference between many of these gaussians 〈g, v〉 will be small.

• So small, sometimes, that we don’t need to ‘pay probability’
to bound them all using the union bound. They needn’t contribute to K .

• We can just use the Cauchy-Schwarz inequality to bound differences.

|〈g, u〉 − 〈g, v〉| = |〈g, u − v〉| ≤ ‖g‖‖u − v‖ ≈ ‖u − v‖.

If the curves u and v are close enough, by bounding 〈g, u〉, we bound 〈g, v〉 for free.

• This means we can take K above to be smaller than the total number of curves.

• It’s enough that some set u1 . . . uK gets close enough to all curves v ∈ M.

This means we have to talk about how many meaningfully different curves we have.

5



ε-covers and snapping

We can quantify this using a set’s ε-covering number Kε .
That’s the number of balls of size ε of radius ε it takes to cover the set.

That is, it’s the size of the set’s smallest ε-cover.

We call a set Vε an ε-cover for the set V if every curve
in the set V is within a distance ε of some curve in Vε .

We can think of this as the set of curves we get by snapping each curve in V
to one of finitely many curves—one that’s an approximation with error ≤ ε.

Vε = {πε(v) : v ∈ V} where ‖πε(v)− v‖ ≤ ε

I’ll call the function πε that does this an ε-snapping map.
That’s not standard terminology. As far as I know there isn’t a standard name for this.
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Q

If we’ve got an ε-snapping map, we’ve got an ε-cover.

Vε = {πε(v) : v ∈ V} where ‖πε(v)− v‖ ≤ ε

We can go the other way, too.
If we’ve got an ε-cover, we can define an ε-snapping map. How?

We snap to the closest curve in our cover.

πε(v) = argmin
vε∈Vε

‖vε − v‖

This means snapping maps and covers are more-or-less interchangeable.

Terminology.
I’ll refer to the size of a snapping map as the size of the cover induced by it,

i.e., the number of different curves it outputs.
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Snapping and Gaussian Width

If we have an ε-snapping map of size Kε for a set V , then we’ve got a bound on
its gaussian width. We use ε-closeness together with with our bound for finite sets.

w(V) = Emax
v∈V

〈g, v〉

= Emax
v∈V

{〈g, v − πε(v)〉+ 〈g, πε(v)〉}

. ‖v − πε(v)‖
≤ε

+max
v∈V

‖π(v)‖

√
log(Kε)

n

When we’re talking about a centered neighborhood V = Ms − µ,
this second term is small because ‖π(v)‖ is small for every v ∈ V .

‖π(v)‖ ≤ ‖v − π(v)‖+ ‖v‖ ≤ ε+ s ≤ 2s
(or log(Kε)=0)

by the triangle inequality

and therefore

w(Ms − µ) . ε+ 2s

√
log(Kε)

n

Gaussian width doesn’t change when we center, so
the same bound holds for the neighborhood itself. 8



Dissatisfying Implications

• We showed last class that log(Kε) ≈ 1/ε for the Lipschitz model.

• If we choose the resolution ε to minimize our bound, it’s roughly 3
√

s2/n.

w(Ms) . ε+s

√
log(Kε)

n
≈ ε+

s
√
εn

≈ s2/3n−1/3 at optimal ε ≈ s2/3n−1/3.

• This tells us that our estimator converges at a fourth-root rate.

s2 ≥ w(Ms) if s2 & s2/3n−1/3 i.e. if s ≈ n−1/4.

• But we know it converges faster.

• The Lipschitz model is contained in the Sobolev model of order 1.

• And we proved the rate of convergence s ≈ n−1/3 for that using Fourier series.

We can do better by looking at covering numbers at multiple resolutions.

w(Ms) .
1

√
n

∫ s

0

√
log(Kε)dε

This is called Dudley’s Integral Bound. Today we’ll prove it.
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Dudley’s Integral Bound

w(Ms) .
1

√
n

∫ s

0

√
log(Kε)dε

• It’s based on an idea called chaining.

• The idea is to use approximations π0(m), π1(m), . . .

at increasing resolutions ε0, ε1, . . ..

• We write each function as a sum of differences
between finer and finer approximations.

m = π0(m) +

∞∑
j=0

πj+1(m)− πj(m)

• We call these differences links in a chain that goes
• from the coarsest approximation, π0(m), which is the same for all functions.
• to the finest approximation, m = π∞(m) itself.

• Before we dig into this too much, let’s warm up.
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Warm-up



Our One-Link Bound

Think about the width bound implied by an ε-snapping map πε for very small ε.

w(V) ≤ Emax
v∈V

〈g, v − πε(v)〉
our link

+ Emax
v∈V

〈g, π(v)〉

≤ E‖g‖ max
v∈Ms

‖v − πε(v)‖+ Emax
v∈V

〈g, π(v)〉

. ε+ rad(V)

√
log(Kε)

n
where rad(V) = max

v∈V
‖v‖

• This is what we’ve been doing. But we have a sense that we’re being wasteful.
• When our ε-cover is fine, it’ll contain vectors that are close to one another.
• The corresponding gaussians will be highly correlated, so our

√
log(K) bound on

their maximum will be loose. Our second term will be bigger than we want.

We could reduce Kε by snapping to coarser approximations—taking ε to be large.
But that makes our first term big.

We can do better by using two approximations—one coarse and one fine.

〈g, πε(v)〉 = 〈g, πε(v)− πε′ (v)〉
a new link

+ 〈g, πε′ (v)〉

where πε′ (v) is a snapping map that gives coarser approximations. One with coarser
resolution ε′ ≥ ε and therefore smaller size K ′

ε ≤ Kε . We bound the pieces as before.
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A Two-Link Bound

w(V) . Emax
v∈V

〈g, v − π(v)〉
old link

+ Emax
v∈V

〈g, π(v)− π′(v)〉
new link

+ Emax
v∈V

〈g, π′(v)− µ?〉

. max
v∈V

‖v − π(v)‖+max
v∈V

‖π(v)− π′(v)‖︸ ︷︷ ︸
≤ε+ε′

√
log(KεKε′ )

n
+max

v∈V
‖π′(v)‖︸ ︷︷ ︸

≤rad(V)+ε′

√
log(K ′

ε)

n

≈ ε+ ε′

√
log(Kε)

n
+ rad(V)

√
log(K ′

ε)

n
.

Q: Where do we get this second bound with log(KεKε′ )?

• There are KεKε′ pairs of the Kε values of π and the Kε′ values of π′ .

• We could probably find a better bound.

• Probably not many more than Kε occur as π(v) and π′(v) for some point v.

• But the difference between Kε and KεKε′ doesn’t matter here.
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A Two-Link Bound

w(V) . Emax
v∈V
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〈g, π(v)− π′(v)〉
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. max
v∈V

‖v − π(v)‖+max
v∈V

‖π(v)− π′(v)‖︸ ︷︷ ︸
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√
log(KεKε′ )

n
+max

v∈V
‖π′(v)‖︸ ︷︷ ︸

≤rad(V)+ε′

√
log(K ′

ε)

n

≈ ε+ ε′

√
log(Kε)

n
+ rad(V)

√
log(K ′

ε)

n
.

Q: Why is the last approximation valid?

• Triangle inequality.∥∥π(v)− π′(v)
∥∥ =

∥∥π(v)− v + v − π′(v)
∥∥

≤ ‖π(v)− v‖+
∥∥π′(v)− v

∥∥ ≤ ε+ ε′ ≤ 2ε′.

• Log of products is sum of logs.

log
(
KεK ′

ε

)
≤ log(Kε) + log(Kε′ ) ≤ 2 log(Kε).
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Better Results

Let’s think about the Lipschitz model again.
log(Kε) ≈ 1/ε.

Old Bound

w(Ms) . ε+ s

√
log(Kε)

n
≈ s2/3n−1/3 at optimal ε ≈ s2/3n−1/3

=⇒ s2 ≥ w(Ms) for s4/3 ≈ n−1/3 i.e. s ≈ n−1/4.

New Bound

w(Ms) . ε+ ε′

√
log(Kε)

n
+ s

√
log(K ′

ε)

n
≈ s4/7n−3/7 at optimal ε ≈ s4/7n−3/7

ε′ ≈ n1/2ε3/2

=⇒ s2 ≥ w(Ms) for s10/7 ≈ n−3/7 i.e. s ≈ n−3/10.

This isn’t the s ≈ n−1/3 bound we got using Fourier series, but it’s closer.
Let’s see what happens when we use a longer chain of approximations.
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ε′ ≈ n1/2ε3/2
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No magic here. We optimize as usual.

1. Set the derivative with respect to ε′ to zero and solve for ε′ in terms of ε.
2. Set the derivative with respect to ε to zero and solve for ε.
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Chaining



The Idea

Suppose we want to bound the gaussian width of a set V .

w(V) = Emax
v∈V

〈g, v〉.

• And we have, for each v ∈ V , increasingly fine approximations π0(v) . . . πM (v).

• These are the closest vectors to v in ε-covers for increasingly small ε0 . . . εM .

• Then we write each v ∈ V as the sum over links in a chain from π0(v) to πM (v).

• Plus a final link from the finest approximation, πM (v), to v itself.

v = v − πM (v) +
M∑

j=1
πj(v)− πj−1(v)
a link in the chain

.

• We can expand v this way when we write our gaussian width.

• And we can bound it by maximizing each term separately.

• Just like we did in our warm-up, but with more terms.
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The Bound

The thing we’re bounding.

w(V) = Emax
v∈V

〈g, v〉.

The decomposition we’re working with.

v = v − πM (v) +
M∑

j=1
πj(v)− πj−1(v)
a link in the chain

.

The bound we get.

w(V) = E

max
v∈V

〈g, v − πM (v)〉+
M∑

j=1

〈
g, πj(v)− πj−1(v)

〉
≤ Emax

v∈V
〈g, v − πM (v)〉+

M∑
j=1

Emax
v∈V

〈
g, πj(v)− πj−1(v)

〉

. εM +
M∑

j=1
εj−1

√
log

(
Kεj

)
n

.

Now all we’ve got to do is choose ε0 . . . εM .
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Considerations

w(V) ≤ Emax
v∈V

〈g, v − πM (v)〉+
M∑

j=1
Emax

v∈V

〈
g, πj(v)− πj−1(v)

〉

. εM +
M∑

j=1
εj−1

√
log

(
Kεj

)
n

.

• We want K to be small.
• That is, we want there to be few distinct values of each link πj(v) − πj−1(v) for v ∈ V .
• The more values, the more gaussians 〈g, πj(v) − πj−1(v)〉
we have to deal with in our union bound.

• We want ε to be small.
• That is, we want all the links to be short in the sense that their variance
‖πj(v) − πj−1‖2/n is small.

• The longer the links, the bigger the individual gaussians we need to bound.

We can’t get both at any one resolution.

• The finer our resolution εj , the more vectors we need in our cover.
• To balance these considerations, we use a lot of short links and a few large ones.
• Since εj and

√
log

(
Kεj−1

)
are multiplied, this can make the product small.
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Considerations

w(V) ≤ Emax
v∈V

〈g, v − πM (v)〉+
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Emax

v∈V

〈
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M∑

j=1
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√
log

(
Kεj

)
n

.
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• That is, we want all the links to be short in the sense that their variance
‖πj(v) − πj−1‖2/n is small.

• The longer the links, the bigger the individual gaussians we need to bound.

A sensible choice: halve ε each time. εj = 1/2j .
Assuming all elements of V are ε = 1-close, i.e. ε0 = 1 is big enough that K1 = 1.

‖πj(v)− πj−1(v)‖ ≤ ‖πj(v)− v‖+ ‖v − πj−1(v)‖

≤ εj + εj−1 = 1/2j + 2/2j = 3/2j .
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Plugging these in yields a bound in terms of cover sizes Kεj

w(V) . 2−M +
M∑

j=1

3
2j

√√√√ log
(

K1/2j

)
n

.
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Chaining all the way

w(V) . 2−M +

M∑
j=1

3
2j

√√√√ log
(

K1/2j

)
n

.

• If V is small enough in the right sense, the terms of the sum get small quickly.

• And if terms get small quickly enough, the sum doesn’t really depend much on M .

• This happens if V has ε-covers of size Kε . 21/εα for α < 2.

M∑
j=1

1
2j

√
log

(
K1/2j

)
.

M∑
j=1

1
2j

√
2αj =

M∑
j=1

2(α/2−1)j ≤
2α/2−1

1 − 2α/2−1 .

This means we can drop the special term for our final link from πM (v) → v.

• If it doesn’t matter how big M is, we can have this link be arbitrarily short.

• That is, we can use the limit of this bound as M → ∞.

17
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Integral approximation

Often people approximate this sum by an integral

w(V) .
1

√
n

M∑
j=1

1
2j

√
log

(
K1/2j

)
(a)
=

1
√

n

M∑
j=1

∫ 1/2j

1/2j+1
2
√

log
(

K1/2j

)
(b)
≤

1
√

n

M∑
j=1

∫ 1/2j

1/2j+1
2
√

log(Kε)dε =
2

√
n

∫ 1

1/2M+1

√
log(Kε)dε

(c)
≤

2
√

n

∫ 1

0

√
log(Kε)dε

(a) We’re integrating a constant.∫ 1/2j

1/2j+1
2c =

(
1
2j −

1
2j+1

)
2c =

1
2j

(
1 −

1
2

)
2c

(b) Smaller ε, bigger ε-cover.

Kε ≥ K1/2j for ε ≤ 1/2j .

(c) Bigger range, bigger integral — our integrand is non-negative.
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Neighborhoods

w(V) .
12
√

n

∫ 1

0

√
log(Kε)dε

• If all v ∈ V are small, we don’t have to integrate all the way to one.
• If we can cover V with one ball of radius s, we’re integrating zero for ε ≥ s.
• For example, for our centered neighborhood V = Ms or its boundary.

M

Ms

μ

M\Ms

μ̂

w(V) .
1

√
n

∫ s

0

√
log(Kε)dε for s := max

v∈V
‖v‖.
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The Lipschitz Regression Case

log(Kε) . 1/ε for M =
{

f : ρLip(f ) ≤ 1, |f | ≤ 1
}
.

Integrating, we can bound the width of a neighborhood

w(Ms) .
1

√
n

∫ s

0

√
log(Kε)dε .

1
√

n

∫ s

0

√
1
ε

dε =
1

√
n

2
√
ε |s0 = 2

√
s
n
.

And solve for the radius s for a least squares estimator

s2 & w(Ms) for s−3/2 ≈ n−1/2 i.e. s ≈ n−1/3.

This agrees with what we see based on Fourier series.
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Chaining and Gaussian Width in General

• This isn’t just another bound — it’s pretty tight.

• This bound — with Kε the size of the smallest ε-cover — can barely be improved.

• It’s off by at most a factor of log(n). Proving it isn’t so hard.

• See Vershynin [2018, Chapter 8.1.2] if you’re interested.

1
√

n log(n)

∫ 1

0

√
log(Kε)dε . w(V) .

1
√

n

∫ 1

0

√
log(Kε)dε

• In fact, if we’re a bit more careful about how we choose πk(v),
chaining gives us a bound that’s off by no more than a constant factor.

• This fancier chaining is pretty straightforward conceptually.

• We just do the bound thinking of πk(v) as an arbitrary function taking on
22k distinct values, then minimize the chaining bound over all the πk .

• It’s easy to prove this is no worse than what we’ve talked about.

• But proving it’s tight up to constants is a feat. See Talagrand [2014].
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Chaining and Fourier Series

Chaining is, in a sense, approximating our analysis using Fourier series.

• Using Fourier series, we were able to decompose the functions
in Sobolev models into combinations of orthogonal functions.

• There were infinitely many such functions, but only a few were allowed to be big.

{m =
∑

j
mjφj :

∑
j

m2
j λj ≤ B} =⇒ ‖mjφj‖L2 = mj ≤ B/

√
λj .

The links in our chains play the role of the Fourier basis functions φj .

• These links, φj,v(x) = {πj(v)− πj−1(v)}(x), are approximately orthogonal.
• for different resolutions j
• for the same resolution and different v — unless they’re the same curve.
• i.e. unless πj(v) = φj(v′) and πj−1(v) = πj−1(v′), so φj,v = φj,v′ .

• And as a result, the corresponding gaussians are approximately uncorrelated.

E〈g, u〉 〈g, v〉 =
1

n2

∑
ij

uivj E gigj =
1

n2

n∑
i=1

uivj =
〈u, v〉

n
.

and therefore

Cov
{〈

g, πj(u)− πj−1(u)
〉
, 〈g, πj′ (v)− πj′−1(v)〉

}
=

〈
πj(v)− πj−1(v), πj′ (u)− πi−1(u)

〉
n

.
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The Point

• The point is to make sure that when we use the union bound,
we’re not being wasteful and bounding more-or-less the same thing twice.

• Decomposing the curves in our model into sums of approximately orthogonal
functions helps us keep track of what we’re bounding more accurately.

• It helps us not overcount when we’re bounding gaussian width.

Let’s look into how orthogonal our links are.
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πk(v) for our Lipschitz cover

1. Draw an εk × εk grid.

2. Snap v(x) to it at each x on the grid.

3. Piecewise-linear between grid points.

Use the small squares for πj+1 , two for πj , and four for πj−1 .

Check the inner product between links `j(v) = πj(v)− πj−1(v).
Do it both for different j and different curves.
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A bigger grid
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You can try it for more curves and more resolutions

• Do it by hand on the blank grid on the next slide.

• Or code it up in R so you can try more stuff.
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A bigger grid
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