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Review



Least squares with gaussian noise

We observe Yi = µ(Xi) + εi for εi
iid∼ N(0, σ2).

We’ve focused on least squares estimators. That’s the curve in
your regression model that minimizes mean squared prediction error.

µ̂ = argmin
m∈M

1
n

n∑
i=1

{Yi − m(Xi)}2

2



Least squares with gaussian noise

We observe Yi = µ(Xi) + εi for εi
iid∼ N(0, σ2).

To think about how well this works, we’ve proven high probability bounds on the error.

‖µ̂− µ‖ < s with probability 1 − δ where usually ‖v‖2 =
1
n

n∑
i=1

v(Xi)
2

We’ve mostly talked about this error’s sample two norm.
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Least squares with gaussian noise

We observe Yi = µ(Xi) + εi for εi
iid∼ N(0, σ2).

Or, more generally, on norms of the difference between
our estimator and the model’s best approximation to µ.

‖µ̂− µ?‖ < s with probability 1 − δ where µ? = argmin
m∈M

‖m − µ‖
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What determines these bounds

It’s the gaussian width of neighborhoods of this best approximation µ? .

M

Ms

μ

M\Ms

μ̂

M

Ms
μ⋆
μ

M\Ms

ˆ

μ

‖µ̂− µ?‖ < s × σ

{
1 +

√
2Σn

δn

}
w.p. 1 − δ if s satisfies

s2

2
≥ w(Ms) for Ms = {m ∈ M : ‖m − µ?‖ ≤ s}.
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Generalization–Non-Gaussian Noise

These bounds more or less work with non-gaussian noise, too.
For example, bounded noise like what we get in probabilistic classification
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Generalization–Population Squared Error

Same deal when we’re interested in the population two-norm of our error.
Sampling from our population acts like subgaussian noise.
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To use this, we need to bound gaussian width

We’ve done this in a few models using specialized techniques.

1. Finite models using the Union Bound and the Gaussian Tail Bound.

s2 ≥ cs
√

log(K)/n for s ≥ c
√

log(K)/n

2. Finite-dimensional models using Projection and the Cauchy-Schwarz Inequality.

s2 ≥ s
√

K/n for s ≥
√

K/n

3. Sobolev models using Fourier Analysis and the Cauchy-Schwarz Inequality.

s2 ≥ cs1−d/2p/
√

n for s ≥ c′n−1/(2+d/p)

There are two essential ideas here.

1. Approximating many curves by combinations of a few.
2. Counting.

This week, we’ll talk about a completely general technique for bounding width.
We’ll use the same two ideas, but our approximations will be subtler.
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Finite Approximations and
Gaussian Width



Finite Models

• In finite models, bounding width is easy.
• It’s the maximum of gaussians with standard deviation ≤ s/

√
n.

E〈g,m − µ?〉2 = E

(
1
n

n∑
i=1

gi{m(Xi)− µ?(Xi)}
)2

=
1

n2

n∑
i=1

E g2
i {m(Xi)− µ?(Xi)}2 =

‖m − µ?‖2

n
.

Q: What happened to the cross terms in the square?
• We can bound this via union bound. We count curves in the model.

w(Ms) ≤ cs

√
log(K)

n
if M contains K curves v1 . . . vK , all with ‖v−µ?‖L2(Pn) ≤ s.

• We may be overcounting. This bounds the max of K totally different gaussians.
• That’s kind of the worst case, so if there’s correlation we’re overcounting.
• And our gaussians are as correlated as the curves in our neighborhood.

E〈g, vk〉〈g, vk′ 〉 = n−2 E vT
k ggT vk′ = n−2 vT

k (E ggT )
I

vk′ = n−1 〈vk , vk′ 〉.

• This definitely won’t work for models with infinitely many curves.
• How do we take advantage of this correlation to tackle infinite models?
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Counting Curves in Infinite Models

w(Ms) = E max
v∈Ms

〈g, v〉 for g ∼ N(0, In×n).

The difference between many of these gaussians 〈g, v〉 will be small.

• So small, sometimes, that we don’t need to ‘pay probability’
to bound them all using the union bound. They needn’t contribute to K .

• We can just use the Cauchy-Schwarz inequality to bound differences.

|〈g, u〉 − 〈g, v〉| = |〈g, u − v〉| ≤ ‖g‖‖u − v‖ ≈ ‖u − v‖.

If the curves u and v are close enough, by bounding 〈g, u〉, we bound 〈g, v〉 for free.

• This means we can take K above to be smaller than the total number of curves.

• It’s enough that some set u1 . . . uK gets close enough to all curves v ∈ M.

This means we have to talk about how many meaningfully different curves we have.
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Notation.

From here on, we’ll think ofMs as a neighborhood of zero of radius s.

Ms = {m ∈ M : ‖m‖ ≤ s}.

We’re using the notationMs for what we usually callMs − µ? . It saves space.
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ε-covers

We call a set Vε an ε-cover for the set V if every element
v ∈ V is within a distance ε of an element πε(v) ∈ Vε .

If we have an ε-coverMε
s of size Kε forMs , then we’ve got a bound on our width.

w(Ms) = E

[
max

v∈Ms
〈g, v〉

]
= E

[
max

v∈Ms
〈g, v − πε(v)〉+ 〈g, πε(v)〉

]

. max
v∈Ms

‖v − πε(v)‖︸ ︷︷ ︸
≤ε

+ max
u∈Mε

s
‖u‖︸ ︷︷ ︸

≤2s

√
log(Kε)

n
.

And this works for infinite models just as well as it does for finite ones.
We can think of Kε as the size of the neighborhoodMs at resolution ε.
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Let’s Stop and Think

Q: Does the ε-coverMε
s have to be a subset ofMs for this?

w(Ms) = E

[
max

v∈Ms
〈g, v〉

]
= E

[
max

v∈Ms
〈g, v − πε(v)〉+ 〈g, πε(v)〉

]

. max
v∈Ms

‖v − πε(v)‖︸ ︷︷ ︸
≤ε

+ max
u∈Mε

s
‖u‖︸ ︷︷ ︸

≤2s

√
log(Kε)

n
.

Nope. We pay at most afactor of 2 in our second term when it isn’t.

.
‖πε(v)− v + v‖ ≤ ‖πε(v)− v‖+ ‖v‖ ≤ ε+ s

∗
≤ 2s for v ∈ Ms.

(*) Because log(Kε) = log(1) = 0 for ε ≥ s, we can bound s + ε by 2s.
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Example: The Lipschitz Regression Model

• Think of an ε-cover ofM as the set of ε-approximations πε(m) for each m inM.
• Often we base these approximations on a grid. πε snaps to that grid.

M = {m : |m(x′
) − m(x)| ≤ |x′ − x|, |m(x)| ≤ 1}.

1. Draw an ε-spaced grid.
2. At each x-coordinate on the grid, snap to the closest grid point.
3. Because our function is 1-Lipschitz, it can’t jump by more than ε between points.

How many of these are there? Consider ε = 1/M for an integer M .

(starting points) · (options per step)steps = 1/ε · 21/ε
.
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Consequences

Our log covering number grows like 1/ε.

log(Kε) ≤ ε−1

We know that µ̂ is in a neighborhood of µ? of radius proportional to s satisfying

s2/2 ≥ σw(Ms) for w(Ms) ≤ cε+ s
√

log(Kε)/n ≈ ε+ sn−1/2ε−1/2

This width bound holds for all ε > 0, so we can choose ε to minimize it.

0 =
d
dε

(
ε+ sn−1/2ε−1/2

)
= 1−sn−1/2ε−3/2/2 for ε =

(
s

2
√

n

)2/3
≈ s2/3n−1/3

And this tells us we’re in a neighborhood of radius s like this.

s2 ≥ cσs2/3n−1/3
≥cσw(M◦

s )
for s4/3 ≥ σn−1/3 i.e. s ≥ σ3/4n−1/4.
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Dissatisfying Results

• We’ll show, momentarily, that log(Kε) ≈ 1/ε for the Lipschitz model.

w(Ms) . ε+s

√
log(Kε)

n
≈ ε+

s
√
εn

≈ s2/3n−1/3 at optimal ε ≈ s2/3n−1/3.

• That gives us a n−1/4 rate.

s2 ≥ w(Ms) if s2 & s2/3n−1/3 i.e. if s ≈ n−1/4.

• But we know it converges at a faster rate.

• The Lipschitz model is contained in the Sobolev model of order 1.

• And we proved the rate of convergence s ≈ n−1/3 for that using Fourier series.

Has the covering idea failed us?

No. We just have to make better use of it. We’ll do that next class.
When we do that, we’ll see a rough connection to Fourier series.
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Refined Bounds in terms of ε-covers

By working with ε-covers at different resolutions, we can prove a refined upper bound.

w(V) .
1

√
n

∫ ∞

0

√
log(Kε)dε where Kε is the size of the smallest ε-cover for V.

This multi-resolution argument is called chaining.
The bound, Dudley’s Integral Bound.

The Lipschitz Regression Case

log(Kε) = 0 for ε > s. Why? And log(Kε) . ε−1 generally.

w(Ms) .
1

√
n

∫ ∞

0
ε−1/2dε

=
1

√
n

∫ s

0
ε−1/2dε

=
1

√
n

2ε1/2 |s0= 2n−1/2s−1/2.

and consequently

s2 ≥ w(Ms) if s3/2 = 2n−1/2 i.e. s ∝ n−1/3
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Optimality

w(V) .
1

√
n

∫ ∞

0

√
log(Kε)dε

This approach to bounding gaussian width is almost optimal.

• There’s also a lower bound, Sudakov’s Minoration Inequality
• It depends on the size Kε of the set’s smallest ε-cover.
• These bounds are close: the upper bound is no more than log(n) times the lower.

w(V) &
1

√
n
max
ε>0

ε
√

log(Kε).
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Summary

The accuracy of our estimator is determined by the rate at which
the gaussian width of our model’s neighborhood boundary grows.

‖µ̂− µ?‖ < s × σ

{
1 +

√
2Σn

δn

}
w.p. 1 − δ if

s2

2
& w(Ms).

That gaussian width is a measure of the boundary’s size at multiple resolutions.
1

√
n
max
ε>0

ε
√

log(Kε) ≈
.

w(M◦
s ) ≈

.

1
√

n

∫ ∞

0

√
log(Kε)dε.
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Credit

Some things borrowed from Vershynin’s High Dimensional Probability.

• The presentation of the refined bounds

• The ε-net picture.

Its chapters 7-8 are a good, although relatively sophisticated, reference for this stuff.
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