
Soblev Models Review



Cosine Series

M =


∞∑

j=0
mjφj(x) :

∞∑
j=0

λjm2
j ≤ 1


for φj(x) =

√
2 cos(πjx) and λj = π2j2.

Q. What’s the correspondence between coefficients and curves?
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Cosine Series

M =


∞∑

j=0
mjφj(x) :

∞∑
j=0

λjm2
j ≤ 1


for φj(x) =

√
2 cos(πjx) and λj = π2j2.

Q. What’s the geometric significance of 1√
λj
? A. They’re ellipse radii.
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Fourier Series Representation

There’s an equivalent definition in terms of an orthogonal basis for functions on [0, 1].

M =

{
m :

∫ 1

0
m′(x)2dx ≤ 1

}
=


∞∑

j=0
mjφj(x) :

∞∑
j=0

λjm2
j ≤ 1


where

∫ 1

0
φj(x)φk(x)dx = 0 for j 6= k.

• We call this a Fourier series representation.

• It makes stuff looks a bit like what you’d see in intro classes.

• We can think of the higher order terms — φj where λj is large — much like
we’d think about quadratic terms, interactions, etc., in linear regression.

In fact, these basis functions are cosines of increasing frequency.
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Bounding the Width of Sobolev
Models using Finite-dimensional
Approximation



The Idea

w(Ms) ≤ s
√

K/n and therefore s = 2σ
√

K
n

satisfies
s2

2σ
≥
√

K
n

≥ w(Ms)

if (every vector in)M is — or is contained in — a subspace of dimension K .
[Gaussian Width Homework]

What ifM is approximately finite-dimensional instead of exactly?

M ⊆ {u + v : ‖u‖L2(P) ≤ λ
−1/2
K and v ∈ MK ⊆ RK}

• For the Sobolev modelM = {m : ‖m(p)‖L2(P) ≤ 1} …

• …this is true with λK = (πK)2p for every K .

[Sobolev Models Homework]
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Exercise

Let’s how these ideas fit together. Use the Cauchy-Schwarz inequality to
bound the width of a neighborhood of zero in a model like this.

w(Ms) = E

[
max

u+v ∈ Ms
〈g, u〉L2(Pn) + 〈g, v〉L2(Pn)

]
where

m ∈ Ms satisfy ‖u‖L2(Pn) ≤ λ
−1/2
K and v ∈ RK for λK = (πK)2p
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The Actual Width of Sobolev
Models



A Convenient Bound on Width

Recall what gaussian width is. It’s the mean of something.

w(V) = EZ for Z = max
v∈V

1
n

n∑
i=1

givi

Means are always less than root-mean-squares.

w(V) ≤ w2(V) :=
√
EZ2 =

√
(EZ)2 +Var(Z)

That root-mean-square w2(V) is what we’ll bound.
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Outline

We’ll bound the width of …

1. The whole model

2. A neighborhood of zero

3. A neighborhood of an arbitrary point in the model.

Each is a small step from the last.

We’ll assume Xi is uniformly distributed on [0, 1], i.e.,

〈φi , φj〉L2(P) = 〈φi , φj〉L2
=

{
1 if i = j
0 otherwise

When it’s not, we can still get a similar bound. See the homework solution.
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The Whole Model’s Width

w2(M) =
√
EZ2 for Z = max

sequences m∑
j λjm2

j ≤B2

1
n

n∑
i=1

gi

∑
j

mjφj(Xi)

.

Step 1. For all sequences m like this, via the Cauchy-Schwarz inequality,

∣∣∣∣∣∣ 1
n

n∑
i=1

gi

∑
j

mjφj(Xi)


∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

j
mj

{
1
n

n∑
i=1

giφj(Xi)

}∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

j
mjλ

1/2
j · λ

−1/2
j

{
1
n

n∑
i=1

giφj(Xi)

}∣∣∣∣∣∣
≤

√√√√∑
j

{
mjλ

1/2
j

}2
·

√√√√√∑
j

[
λ
−1/2
j

{
1
n

n∑
i=1

giφj(Xi)

}]2

≤ B ·

√√√√√∑
j

λ−1
j

{
1
n

n∑
i=1

giφj(Xi)

}2
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The Whole Model’s Width

w2(M) =
√
EZ2 where |Z | ≤ B ·

√√√√√∑
j

λ−1
j

{
1
n

n∑
i=1

giφj(Xi)

}2

Step 2. We can calculate the mean square of this bound on |Z |.

EZ2 ≤ B2
∑

j
λ−1

j E

{
1
n

n∑
i=1

giφj(Xi)

}{
1
n

n∑
i′=1

gi′φj(Xi′ )

}

=
B2

n2

∑
j

λ−1
j

n∑
i=1

n∑
i′=1

E gigi′φj(Xi)φj(Xj)

(a)
=

B2

n2

∑
j

λ−1
j

n∑
i=1

n∑
i′=1

E gigi′ Eφj(Xi)φj(Xj)

(b)
=

B2

n2

∑
j

λ−1
j

n∑
i=1

E g2
i Eφj(Xi)

2

(c)
=

B2

n2

∑
j

λ−1
j

n∑
i=1

1 =
B2

n
∑

j
λ−1

j

(a) g and X are independent; (b) gi and gi′ are independent w/ mean zero; (c) E g2
i = Var(gi) = 1 and Eφj(Xi)

2 = 1.
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The Whole Model’s Width

w2(M) ≤

√√√√B2

n
∑

j
λ−1

j is our bound.
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A Neighborhood of Zero’s Width

There’s a trick to this. Curves in our model are in one ellipse.

B2 ≥
∑

j
λjm2

j

The constraint that we’re near zero restricts our coefficients to another ellipse.

s2 ≥

∥∥∥∥∥∥
∑

j
mjφj

∥∥∥∥∥∥
2

L2

=

〈∑
j

mjφj ,
∑

k
mkφk

〉
L2

=
∑
j,k

mjmk〈φj , φk〉L2 =
∑

j
m2

j .

In a neighborhood of zero within our model, both constraints are satisfied.
And so are linear combinations of them.∑

j
mjφj ∈ Ms =⇒

1
B2

∑
j

λjm2
j +

1
s2

∑
j

m2
j ≤ 1 + 1 = 2.

That tells that curves in our neighborhood are contained in another ellipse.

Ms ⊆ M̃s :=

∑
j

mjφj :
∑

j
λ̃jm2

j ≤ 2

 for λ̃j =
λj

B2 +
1
s2

And we can use our ‘whole model’ bound on this ellipse.

w2(Ms) ≤ w2(M̃s) ≤

√√√√ 2
n
∑

j

(
λj

B2 +
1
s2

)−1
.
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A Neighborhood of an Arbitrary Curve

There’s a trick to this too. Think of our model as a ball in the Sobolev seminorm.

M = {m : ρ(m) ≤ B} where ρ

∑
j

mjφj

 =

√∑
j

λjm2
j

Now let’s think about our centered neighborhood.

Ms − µ? =
{

m − µ? : ρ(m) ≤ B and ‖m − µ?‖L2 ≤ s
}

This is contained in a neighborhood of zero by the triangle inequality.

ρ(m − µ?) ≤ ρ(m) + ρ(µ?) ≤ B + B

so

Ms − µ? ⊆
{

m − µ? : ρ(m − µ?) ≤ 2B and ‖m − µ?‖L2 ≤ s
}
.

This means we can use our last bound if we double B. Easy enough.

w2(Ms) ≤ w2(M̃s) ≤

√√√√ 2
n
∑

j

(
λj

(2B)2 +
1
s2

)−1
.
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Getting Concrete

Let’s calculate this for our Sobolev modelMp by plugging in our eigenvalues.

w2(Mp
s ) ≤

√√√√ 2
n
∑

j

(
λj

4B2 +
1
s2

)−1
for λj = (πj)2p

Bounds and Approximations

1. Sum exceeds max.(
λj

4B2 +
1
s2

)−1
≤
{
max

(
λj

4B2 ,
1
s2

)}−1
= min

(
4B2

λj
, s2

)
2. Integral approximation.∑

j
min

(
4B2

λj
, s2

)
≈
∫ ∞

0
min

(
4B2

λx
, s2
)

dx

Conclusion

w2(Mp
s ) .

√
2
n

∫ ∞

0
min{4B2(πx)−2p, s2}dx

≤

√
8B2

n

∫ ∞

0
min{(πx)−2p, s2}dx for B ≥ 1/2
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What is this really?

w2(Mp
s ) ≤

√
8B2

n

∫ ∞

0
min{(πx)−2p, s2}dx for B ≥ 1/2

The integral has two parts.

1. The beginning, where (πx)−2p is big and we’re just integrating s2 .
2. The end, where (πx)−2p is small and we’re integrating that.

When does the end start?

=

∫ π−1s−1/p

0
s2 +

∫ ∞

π−1s−1/p
π−2px−2pdx

= π−1s2−1/p + π−2p x1−2p

1 − 2p

∣∣∣∣∞
π−1s−1/p

if p > 1/2, otherwise∞

= π−1s2−1/p + π−2p π2p−1s2−1/p

2p − 1
= cps2−1/p for cp = π−1{1 + 1/(2p − 1)}.

Our width bound is proportional to 1/
√

n times the integral’s square root.

w(Mp
s ) . Bn−1/2s1−1/2p.
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An Error Bound

To bound our least squares estimator’s error, we do what we always do.
We find the smallest solution we can to this inequality.

‖µ̂− µ?‖ ≤ s w.p 1 − δ if s2 ≥ 2σcδ w(Mp
s ) and therefore if s2 ≥ c′δBn−1/2s1−1/2p

s2 & n−1/2s1−1/2p or equivalently

s1+1/2p & n−1/2 or equivalently

s & n−1/{2(1+1/2p)} = n−1/(2+1/p).

And this means that we gain a decimal point of precision with …

• 103 = 1000 times more data using a model with p = 1 bounded derivative.
• 102.50 ≈ 300 times more data using a model with p = 2 bounded derivatives.
• 102.33 ≈ 200 times more data using a model with p = 3 bounded derivatives.
• 102.25 ≈ 175 times more data using a model with p = 4 bounded derivatives.

This is starting to look more possible. But getting into models we don’t understand.
What do 3 or 4 bounded derivatives look like? This’ll be a problem soon.
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Multidimensional Sobolev Models



The Isotropic Sobolev Model

To get a multidimensional generalization of our (p = 1) Sobolev model, we can
replace the squared derivative with the squared norm of the gradient.

M1 = {m : ρ-∆(m) ≤ B} where ρ-∆(m) =

√∫
[0,1]d

‖∇m(x)‖2dx.

Much like in the univariate case, we can use integration by parts
to get an equivalent definition in terms of a self-adjoint operator.

M1 = {m : ρ-∆(m) ≤ B} where ρ-∆(m) =
√

〈-∆p m,m〉L2 .

That operator is the second derivative’s simplest higher-dimensional generalization.

The Laplacian -∆m = −
∂2

∂x2
1

m(x)− . . .−
∂2

∂x2
d

m(x)

It’s a self-adjoint operator on functions that are even and 2-periodic along each axis.

f (±x1, . . . ,±xd) = f (x1 + 2j1, . . . , xj + 2jd) = f (x1, . . . , xd) for j ∈ Zd

integer vectors
.
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Eigenvectors and Eigenvalues

Because this operator self-adjoint, we know it has an orthogonal basis of eigenvectors.

The Laplacian -∆m = −
∂2

∂x2
1

m(x)− . . .−
∂2

∂x2
d

m(x)

Anybody want to guess?

They’re products of cosines.

φj(x) = cos(πj1x1) · · · cos(πjdxd) with eigenvalue λj = (π‖j‖2)
2 for j ∈ Zd .

integer vectors
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Smoother Isotropic Sobolev Models

There are versions for higher order derivatives.

Mp = {m : ρ-∆p (m) ≤ B} where ρ-∆p (m) =
√

〈-∆p m,m〉L2

And Fourier series representations.

Mp =

∑
j∈Zd

mjφj :
∑
j∈Zd

λp
j m2

j ≤ B2

 for φj(x) = cos(πj1x1) · · · cos(πjdxd)

and λj = (π‖j‖2)
2.

You can derive all this stuff the same way as the univariate case.
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The Gaussian Width of a Neighborhood

Abstractly, width is the same thing. All we used before were the eigenvalues.

w(Mp
s ) ≤

√√√√8B2

n
∑

j
min

{
λ−1

j , s2
}

for λj = (π‖j‖2)
2p.

• But now we’re summing more or them, spreading out in all d directions.

• This means we see the same value of λ−1
j in the sum multiple times.

• Same ‖j‖2 , different j.

Integral approximation makes it easy to ‘count’ these copies.

w(Mp
s ) .

√
8B2

n

∫
x∈Rd

min{(π‖x‖2)−2p, s2}dx

• The ‘number of copies’ gets larger as ‖x‖2 does.

• To be precise, it’s the surface area of the sphere of radius r = ‖x‖2

• And if we change variables to polar coordinates, the integral is easy.

16



The Integral

Step 1. Reduce it to a one-dimensional integral.

w(Mp
s )

2 .
8B2

n

∫
x∈Rd

min
{
(π‖x‖2)

−2p, s2}dx in rectangular coordinates

=
8B2

n

∫ [∫
rd−1 min

{
(πr)−2p, s2}dr

]
dθ1 . . . θd−1 in polar coordinates

=
8B2

n

[∫
rd−1 min

{
(πr)−2p, s2}dr

]∫
1dθ1 . . . θd−1

sphere surface area
2πd/2/ Γ(d/2)≤35

[∫
. . .

]
is constant in θ
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Figure 1: sphere surface area vs. dimension
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The Integral

Step 2. Calculate the one-dimensional integral. This should be familiar.

w(Mp
s )

2 .
8B2

n
·

2πd/2

Γ(d/2)
·
∫

rd−1 min
{
(πr)−2p, s2}dr

The integral has two parts.

1. The beginning, where (πr)−2p is big and we’re just integrating rd−1 × s2 .
2. The end, where (πr)−2p is small and we’re integrating rd−1× that.

When does the end start?

=

∫ π−1s−1/p

0
rd−1s2dr +

∫ ∞

π−1s−1/p
π−2prd−1−2pdr

= s2 rd

d

∣∣∣∣π−1s−1/p

0
+ π−2p rd−2p

d − 2p

∣∣∣∣∞
π−1s−1/p

if p > d/2, otherwise∞

=
π−ds2−d/p

d
+

π−ds2−d/p

2p − d
= cd,ps2−d/p for cd,p =

π−d

d

{
1 +

1
2p
d − 1

}

17



The Integral

Step 2. Calculate the one-dimensional integral. This should be familiar.

w(Mp
s )

2 .
8B2

n
·

2πd/2

Γ(d/2)
·
∫

rd−1 min
{
(πr)−2p, s2}dr

The integral has two parts.

1. The beginning, where (πr)−2p is big and we’re just integrating rd−1 × s2 .
2. The end, where (πr)−2p is small and we’re integrating rd−1× that.

It starts when r > π−1s−1/p . Let’s do it.

=

∫ π−1s−1/p

0
rd−1s2dr +

∫ ∞

π−1s−1/p
π−2prd−1−2pdr

= s2 rd

d

∣∣∣∣π−1s−1/p

0
+ π−2p rd−2p

d − 2p

∣∣∣∣∞
π−1s−1/p

if p > d/2, otherwise∞

=
π−ds2−d/p

d
+

π−ds2−d/p

2p − d
= cd,ps2−d/p for cd,p =

π−d

d

{
1 +

1
2p
d − 1

}

17



The Integral

Step 2. Calculate the one-dimensional integral. This should be familiar.

w(Mp
s )

2 .
8B2

n
·

2πd/2

Γ(d/2)
·
∫

rd−1 min
{
(πr)−2p, s2}dr

The integral has two parts.

1. The beginning, where (πr)−2p is big and we’re just integrating rd−1 × s2 .
2. The end, where (πr)−2p is small and we’re integrating rd−1× that.

It starts when r > π−1s−1/p . Let’s do it.

=

∫ π−1s−1/p

0
rd−1s2dr +

∫ ∞

π−1s−1/p
π−2prd−1−2pdr

= s2 rd

d

∣∣∣∣π−1s−1/p

0
+ π−2p rd−2p

d − 2p

∣∣∣∣∞
π−1s−1/p

if p > d/2, otherwise∞

=
π−ds2−d/p

d
+

π−ds2−d/p

2p − d
= cd,ps2−d/p for cd,p =

π−d

d

{
1 +

1
2p
d − 1

}

17



The Integral

Summary.
Our width bound is proportional to n−1/2 s1−d/2p .

w(Mp
s )

2 .
8B2

n
·

2πd/2

Γ(d/2)
· cd,ps2−d/p

17



An Error Bound

To bound our least squares estimator’s error, we do what we always do.

‖µ̂− µ?‖ ≤ s w.p 1 − δ if s2 ≥ 2σcδ w(Mp
s ) and therefore if s2 ≥ c′δBn−1/2s1−d/2p

We’ve essentially solved this in the 1D case.
But now smoothness is relative to dimension: p/d is the new p.

n−1/(2+d/p) is our rate of convergence.
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To bound our least squares estimator’s error, we do what we always do.

‖µ̂− µ?‖ ≤ s w.p 1 − δ if s2 ≥ 2σcδ w(Mp
s ) and therefore if s2 ≥ c′δBn−1/2s1−d/2p

We’ve essentially solved this in the 1D case.
But now smoothness is relative to dimension: p/d is the new p.

n−1/(2+d/p) is our rate of convergence.

Derivation.

s2 & n−1/2s1−d/2p or equivalently

s1+d/2p & n−1/2 or equivalently

s & n−1/{2(1+d/2p)} = n−1/(2+d/p).
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We’ve essentially solved this in the 1D case.
But now smoothness is relative to dimension: p/d is the new p.

n−1/(2+d/p) is our rate of convergence.

Implications.
This means that we gain a decimal point of precision with …

• 104 = 10, 000 times more data using a model with p = d/2 bounded derivatives.
• 103 = 1000 times more data using a model with p = d bounded derivatives.
• 102.50 ≈ 300 times more data using a model with p = 2d bounded derivatives.
• 102.33 ≈ 200 times more data using a model with p = 3d bounded derivatives.
• 102.25 ≈ 175 times more data using a model with p = 4d bounded derivatives.

Smoothness doesn’t count for much if it’s spread over many dimensions.
Even if we’ve got tons of data, we need 3+ derivatives in 3+ dimensions.

That’s the curse of dimensionality.
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Intuition

If two points are close, a smooth functions’s values at them will be close.
But this isn’t very useful if our observations are far apart.

And higher-dimensional observations do tend to be further apart.

Left Uniformly distributed points in the unit interval.
Right Uniformly distributed points in the square interval.
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Intuition

If two points are close, a smooth functions’s values at them will be close.
But this isn’t very useful if our observations are far apart.

And higher-dimensional observations do tend to be further apart.

Left. As before, but overlaid.
Right. Fraction of points (y) within a distance (x) of one of them (�).

Extra curves are for the unit 3/4/5-dimensional cubes.
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This looks bad

n−1/(2+d/p) is our rate of convergence.

The cube-root interpretation.

• With one-dimensional data, we’ve been getting n−1/3 rates.
• That’s more 1 digit of precision / 1000× more observations.
• It’s going from a study that enrolls the students in
one intro class to everyone at Emory, UGA and Tech.

• That’s a lot, but maybe it’s what we’re used to and we can accept that.
• It’s what we got for monotone, bounded variation, and lipschitz regression.

• With two-dimensional data, we can do that by constraining second derivatives.
• With data in 3+ dimensions, we’d need to constrain 3rd derivatives. That’s bad.

• We don’t have much intution for 3rd derivatives
• So we’d be relying on assumptions we essentially don’t understand.

• People say the curse is a high dimensional phenomenon. It’s not.

• By this standard, 3 dimensional data — most data — is high dimensional.
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This looks bad

n−1/(2+d/p) is our rate of convergence.

The fourth-root interpretation.

• If we want to estimate something like an average treatment effect— a number
rather than a curve—things aren’t quite as bad.

• Clever estimators like the R-Learner amplify our precision.
• They make it possible to get a n−1/2 rate estimates the effect.

• That’s more 1 digit of precision / 100× more observations.
• It’s going from a study that enrolls the students in
one intro class to everyone at Emory. Not terrible.

• And there’s no way to do better, even with extremely strong assumptions.
• That’s the rate at which sample averages converge.

• What we need to do that is n−1/4 rate estimates of a few curves. π and β.

• We can do that with constrained pth derivatives for p = d/2.

• i.e. we can do without third derivatives until we’ve got 5+-dimensional data.

20



This looks bad

n−1/(2+d/p) is our rate of convergence.

The everyone in the world interpretation

• Suppose we’ve run a study on a 80-student intro class.

• And we’re now going to rerun it on everyone in the world.

• About 8 billion people. A hundred million (108) times more.

• That’s a hard thing to do, so we want a big return. Two more digits.

• We can do that if we’re estimating curve in K-or-fewer dimensions. What’s K?

20



Good news?

The Isotropic Sobolev model may be the wrong model to use.
It’s popular, but it’s a terrible model for most things.

M =

{
m :

1
2d

∫
[−1,1]d

‖∇m(x)‖2
2 ≤ B2

}

The problem is that it’s isotropic, i.e. rotation invariant. Almost.

You can show it using the chain rule. If mR(x) = m(Rx) for a rotation matrix R,
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The Isotropic Sobolev model may be the wrong model to use.
It’s popular, but it’s a terrible model for most things.

M =

{
m :

1
2d

∫
[−1,1]d

‖∇m(x)‖2
2 ≤ B2

}

The problem is that it’s isotropic, i.e. rotation invariant. Almost.

You can show it using the chain rule. If mR(x) = m(Rx) for a rotation matrix R,

∇mR(x) = R ∇m(Rx) =⇒ ‖∇mR(x)‖2
2 = 〈R ∇m(Rx), R ∇m(Rx)〉2

= 〈RT R
=I

∇m(Rx), ∇m(Rx)〉2 = ‖∇m(Rx)‖2
2

And our squared Sobolev norm is this integrated over the unit cube.
That’s ‖∇m‖2

2 integrated over a rotation of that cube. 21



Good news?

The Isotropic Sobolev model may be the wrong model to use.
It’s popular, but it’s a terrible model for most things.

M =

{
m :

1
2d

∫
[−1,1]d

‖∇m(x)‖2
2 ≤ B2

}

The problem is that it’s isotropic, i.e. rotation invariant. Almost.

Intuition.
We pay the same for variation along every unit-length combination of covariates.(

income74
income75

)
rotates to

1
√

2

(
income74− income75
income74+ income75

)
.

We usually expect different amounts of variation along different combinations.
The curse hits, in part, because the model doesn’t encode our assumptions. 21



An Overcorrection

Additive models only allow variation along the axes.

M =
{

m(x) = m1(x1) + . . .+ md(xd) : ‖m′
1‖2

L2
+ . . . ‖m′

d‖
2
L2

≤ B2
}

We take the contributions of each covariate and sum them up.

• What’s nice is that they don’t suffer from the curse of dimensionality.

• We always get error bounds comparable to what we’d get in 1D.

• What isn’t is that they can’t fit all that much.
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An Overcorrection

Additive models only allow variation along the axes.

M =
{

m(x) = m1(x1) + . . .+ md(xd) : ‖m′
1‖2

L2
+ . . . ‖m′

d‖
2
L2

≤ B2
}

We take the contributions of each covariate and sum them up.

(
income74
income75

)
rotates to

1
√

2

(
income74− income75
income74+ income75

)
.

• You might think average income in 74 and 75 predicts income in 76. Additive.
• Maybe you’ll earn a bit more if you were on an upward trajectory. Maybe Additive.
• Maybe you’ll also earn much more if you took a big dip in 75.
e.g. you spent part of 75 unemployed. That’s not additive.
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Middle Ground

Sobolev Models with Higher Order Mixed Partials are somewhere between these.
They penalize off-axis variation more, but still allow it.

This is a 2D version. We include the mixed partial.

M =

{
m :

1
4

∫
[−1,1]2

‖∇m(x)‖2 +

{
∂2

∂x1∂x2
m(x)

}2
≤ B2

}

And this is the general case. We include all mixed partials.

M =

m :
1
2d

∫
[−1,1]d

∑
k∈Zd

+
maxi≤d ki=1

{
∂
∑

i ki

∂xk1
1 . . . ∂xkd

d

m(x)
}2

≤ B2
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A Picture

24



Exercise

Bound the width of a neighborhood in this model.

M =
{

m(x) = m1(x1) + . . .+ md(xd) : ‖m′
1‖2

L2
+ . . . ‖m′

d‖
2
L2

≤ B2
}
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