
Machine Learning Theory
The Kernel Trick

David A. Hirshberg
March 6, 2025

Emory University

1

A Problem

• These Fourier series representations are great in theory.

• They make theoretical analysis easy. We’ll start on that in a couple weeks.

• And they make regression look like regression in linear models.
• But using them for computation is hard.

• Those linear models are infinite-dimensional.
• We can use finite-dimensional approximations.
• But sometimes that means allocating a 316 GB vector.

2

Context

µ̂ = argmin
increasing m

1
n

n∑
i=1

{Yi − m(Xi)}2

When we solved for our estimator in most of our 1D models,
we optimized over n parameters. Not infinitely many.

You can parameterize in terms of the values of m at the sorted Xi .

m ∈ Rn with mi = m(Xi)

Or the jumps from one to the next.

b ∈ Rn with b1 = m(X1) and bi = m(Xi)− m(Xi−1) for i > 1.

This works for Lipschitz Regression, Bounded TV Regression, Monotone Regression,
etc.

We’d like to do something similar for Sobolev Regression, and we will.

• We won’t parameterize it the same way.
• But we’ll get n parameters.

3

Notation

We’ll reparameterize our models by scaling down our eigenvectors.

m =
∑

k
mkφk =

∑
k

mk
√

λk︸ ︷︷ ︸
m̃k

φk /
√

λk︸ ︷︷ ︸
φ̃k

.

This makes our special inner product a little easier to express.

〈T u, v〉 =
∑

k
λkukvk =

∑
k

ũk ṽk = 〈ũ, ṽ〉2 =
∑

j
ũj ṽj .

And makes our models look a little more like a typical ridge regression.

M = {m : ‖m‖T ≤ 1} =

{∑
k

m̃k φ̃k : ‖m̃‖2 ≤ 1
}
.

With this rescaling, our coefficients m̃ are in a sphere, not an ellipse.

4

Least Squares in Sobolev Spaces

µ̂(x) =
∑

k
m̂k φ̃k(x) for m̂ = argmin

m̃:‖m̃‖2≤1

1
n

n∑
i=1

{
Yi −

〈
m̃, φ̃(Xi)

〉
2

}2

Is this really an optimization over infinitely many parameters?

No. It’s an optimization over n parameters.

• Mean squared error only depends on n inner products with our basis vectors,

〈m̃, φ̃(X1)〉2 . . . 〈m̃, φ̃(Xn)〉2.

• So there’s a solution m̂ that’s spanned by our basis vectors.

m̂ =
n∑

j=1
α̂j φ̃(Xj).

• If we varied m̃ in a perpendicular direction:
• We’ll make the norm we’re constraining bigger.
• We won’t improve squared error.

This lets us reparameterize our problem in terms of these n inner products.
There’s a solution that can be written like this.

m(x) =
∑

k

n∑
j=1

αj φ̃k(Xj)︸ ︷︷ ︸
m̃k

φ̃k(x)

=
n∑

j=1
αj

∑
k

φ̃k(Xj)φ̃k(x)

=
n∑

j=1
αj

〈
φ̃(Xj), φ̃(x)

〉
2

5

Least Squares in Sobolev Spaces

µ̂(x) =
∑

k
m̂k φ̃k(x) for m̂ = argmin

m̃:‖m̃‖2≤1

1
n

n∑
i=1

{
Yi −

〈
m̃, φ̃(Xi)

〉
2

}2

Is this really an optimization over infinitely many parameters?
No. It’s an optimization over n parameters.

• Mean squared error only depends on n inner products with our basis vectors,

〈m̃, φ̃(X1)〉2 . . . 〈m̃, φ̃(Xn)〉2.

• So there’s a solution m̂ that’s spanned by our basis vectors.

m̂ =
n∑

j=1
α̂j φ̃(Xj).

• If we varied m̃ in a perpendicular direction:
• We’ll make the norm we’re constraining bigger.
• We won’t improve squared error.

This lets us reparameterize our problem in terms of these n inner products.
There’s a solution that can be written like this.

m(x) =
∑

k

n∑
j=1

αj φ̃k(Xj)︸ ︷︷ ︸
m̃k

φ̃k(x)

=
n∑

j=1
αj

∑
k

φ̃k(Xj)φ̃k(x)

=
n∑

j=1
αj

〈
φ̃(Xj), φ̃(x)

〉
2

5

The reparameterized problem

To estimate µ(x), we take a weighted average of inner products between

• The basis vectors at the observed Xi

• The basis vector φ(x) at the point we’re trying to predict.

All we’ve got to do is learn the n weights via least squares. That is, we predict

µ̂(x) =
n∑

j=1
α̂j

〈
φ̃(Xj), φ̃(x)

〉
where

α̂ = argmin
α∈Rn∥∥∥∑n

j=1 αj φ̃(Xj)
∥∥∥

2
≤1

i.e.
∑

j m̃2
j ≤1

1
n

n∑
i=1

 Yi −
n∑

j=1
αj

〈
φ̃(Xj), φ̃(Xi)

〉
2


2

.

• We’ve still got to compute inner products between infinite dimensional vectors.
• But that’s all we have to do with them. The vectors only appear in inner products.
• Can we somehow do this without actually computing the vectors themselves?

6

The Kernel Trick

Suppose we knew how to evaluate these inner products—we’ve coded up a function.

K(x, x′) =
〈
φ̃(x), φ̃(x′)

〉
2

is called a Kernel.

Then we are set. All we’ve got to compute is a ridge regression with n parameters.

µ̂(x) =
n∑

j=1
α̂j K(Xj , x)

where

α̂ = argmin
α∈Rn∑

ij αiαjK(Xj ,Xk)≤1

n∑
i=1

 Yi −
n∑

j=1
αjK(Xj ,Xi)


2

= argmin
α∈Rn

αT Kα≤1

‖Y − Kα‖2
2 where Kij = K(Xi ,Xj).

7

The Kernel Trick in General

We’ve done nothing specific to least squares here. Here’s what we’ve used.

• We’ve minimizing a cost that depends on only two aspects of the curve m
1. Its values m(X1) . . . m(Xn) at the observed covariates
2. Its Sobolev norm ‖m‖T = 〈Tm, m〉

• And that it prefers that norm to be small.

That means it’s enough to optimize over coefficients
m̃k spanned by the observed basis vectors φ̃(Xi).
Otherwise, we’d increase cost for no reason.

Conveniently

• The two aspects of m involved in our cost can be expressed
in terms of inner products between these basis vectors.

• And therefore in terms of the kernel.

mα(x) =
n∑

j=1
αj

〈
φ̃(Xj), φ̃(x)

〉
2

K(Xj ,x)

and ‖mα‖T =
∑

ij
αiαj

〈
φ̃(Xj), φ̃(Xj)

〉
2

K(Xi ,Xj)

8

Other Applications of the Kernel Trick

Support Vector Machine Classification

µ̂ = argmin
‖m‖T≤1

−
n∑

i=1
max{0,Yim(Xi)} for labels Yi ∈ {±1}.

It minimizes hinge loss, an approximation to classification error.
We classify based on the sign of µ̂(x).

Support Vector Machine Classification

argmin
‖m‖T≤1

−
1
n

n∑
i=1

max{0,Yim(Xi)} for labels Yi ∈ {±1}.

It minimizes hinge loss, an approximation to classification error.

9

Where this leaves us

If we’re using a Sobolev model, least squares is easy if we know the model’s kernel.

K(x, x′) =
〈
φ̃(x), φ̃(x′)

〉
2
=

∑
k

λ−1
k φk(x) φk(x′).

Same goes for SVM Classification. Or more or less anything else.

One option is to just make up a kernel and use that.

• The downside is that you’re using whatever model it happens to be the kernel for.

• You may not know what this model is, and if you did, you might not like it.

People who take this approach often use the Gaussian Kernel.

K(x, x′) = exp
(
−‖x − x′‖2

2
)

This is the kernel for a model that includes only very smooth functions.
The result is very fast convergence to a very smooth approximation to what they want.

10

Where this leaves us

If we’re using a Sobolev model, least squares is easy if we know the model’s kernel.

K(x, x′) =
〈
φ̃(x), φ̃(x′)

〉
2
=

∑
k

λ−1
k φk(x) φk(x′).

Same goes for SVM Classification. Or more or less anything else.

Another option is to choose a model and compute its kernel exactly.

• There are techniques for this, but often you wind up with another hard problem.

• To evaluate the kernel K(x, x′), you’d maybe have to solve a differential equation.

• Sometimes this is fast, sometimes it’s not.

10

Where this leaves us

If we’re using a Sobolev model, least squares is easy if we know the model’s kernel.

K(x, x′) =
〈
φ̃(x), φ̃(x′)

〉
2
=

∑
k

λ−1
k φk(x) φk(x′).

Same goes for SVM Classification. Or more or less anything else.

A third option is to choose a model, then compute its kernel approximately.

• When you do this, you’re effectively using a different model.

• You’re using the model that your approximation is actually the kernel for.

• But if your approximation is good, that’ll be pretty similar to the model you chose.

If you’re using a popular model, usually someone’s done this already.

• This means you can look up the kernel — just google your model.

• But be a little careful.

• Often people aren’t all that clear about what model it’s really the kernel for.

10

Computing Kernels

The Sobolev Model in 1D

M =
{

m :
〈
m′, m′〉

L2
≤ 1

}
=

{
m :

〈
−m′′, m

〉
L2

≤ 1
}

K(x, x′) =
∞∑

k=0
(πk)−2

λ−1
k

√
2 cos(πkx)

φk(x)

√
2 cos

(
πkx′)

φk(x′)

Ideas

• Cosine product formula.

cos(a) cos(b) = {cos(a + b) + cos(a − b)}/2

• Integral approximation
∞∑

k=0
f (k) ≈

∫ ∞

0
f (k)

• Don’t divide by zero—use a slightly different model.

λk = ε2 + (πk)2 is the kth eigenvalue of T = ε2 −
d2

dx2

• Let a computer integrate for us. I use wolfram alpha most of the time.

integrate cos(πkz)/(ε2 + π2k2) for k from 0 to∞ =⇒ εe−|εz| / 2ε2.

11

The Sobolev Model in 1D

M =
{

m :
〈
m′, m′〉

L2
≤ 1

}
=

{
m :

〈
−m′′, m

〉
L2

≤ 1
}

K(x, x′) =
∞∑

k=0
(πk)−2

λ−1
k

√
2 cos(πkx)

φk(x)

√
2 cos

(
πkx′)

φk(x′)

Ideas

• Cosine product formula.

cos(a) cos(b) = {cos(a + b) + cos(a − b)}/2

• Integral approximation
∞∑

k=0
f (k) ≈

∫ ∞

0
f (k)

• Don’t divide by zero—use a slightly different model.

λk = ε2 + (πk)2 is the kth eigenvalue of T = ε2 −
d2

dx2

• Let a computer integrate for us. I use wolfram alpha most of the time.

integrate cos(πkz)/(ε2 + π2k2) for k from 0 to∞ =⇒ εe−|εz| / 2ε2.

11

Worksheet

K(x, x′) =
∞∑

k=0
(ε2 + π2k2)−1

λ−1
k

√
2 cos(πkx)

φk(x)

√
2 cos

(
πkx′)

φk(x′)

Formulas

cos(a) cos(b) = {cos(a + b) + cos(a − b)}/2∫ ∞

0
(ε2 + π2k2)−1 cos(πkz) = εe−|εz| / 2ε2.

12

What now?

• Implement it.

• Compare to the approximation-based approximation error we’ve been using to
check our approximation.

• Generalize to other models we might want to use.
• e.g. the Gaussian Sobolev Model.
• e.g. the Isotropic Multivariate Sobolev Model.

13

	Computing Kernels

