Machine Learning Theory
The Kernel Trick

David A. Hirshberg
March 6, 2025

Emory University

A Problem

- These Fourier series representations are great in theory.
- They make theoretical analysis easy. We'll start on that in a couple weeks.

- And they make regression look like regression in linear models.
- But using them for computation is hard.

+ Those linear models are infinite-dimensional.
- We can use finite-dimensional approximations.
- But sometimes that means allocating a 316 GB vector.

i = argmin Z{ Y — m(X;)}?

increasing m T ;5

When we solved for our estimator in most of our 1D models,
we optimized over n parameters. Not infinitely many.

You can parameterize in terms of the values of m at the sorted X;.
meR" with m; = m(X;)
Or the jumps from one to the next.
beR™ with b =m(X1) and b; = m(X;) — m(X;—1) for i > 1.

This works for Lipschitz Regression, Bounded TV Regression, Monotone Regression,
etc.

We'd like to do something similar for Sobolev Regression, and we will.

- We won't parameterize it the same way.
- But we'll get n parameters.

We'll reparameterize our models by scaling down our eigenvectors.

M=ka¢k=zmwﬁ m/f

& mk <Z)k

This makes our special inner product a little easier to express.
(T u,v) ZAkukvk*ZUkvk U,)2 :Zﬂﬁ}j.
J
And makes our models look a little more like a typical ridge regression.
M={m:|m|r <1} = {Zfﬂkd;k dimll2 < 1}~
k

With this rescaling, our coefficients m are in a sphere, not an ellipse.

Least Squares in Sobolev Spaces

a(z) = ankd;k(x) for m = argmin lﬁ:{ Y — <7h, JS(XZ)>2 }2
k

mi||ml2<1 T T

Is this really an optimization over infinitely many parameters?

Least Squares in Sobolev Spaces

a(z) = ankd;k(x) for m = argmin li:{ Y — <7h, d~>(XZ)>2 }2
k

mi||ml2<1 T T

Is this really an optimization over infinitely many parameters?
No. It's an optimization over n parameters.

- Mean squared error only depends on n inner products with our basis vectors,

(1, §(X1))2 - - . (1, B(Xn))2.

- So there's a solution 7 that's spanned by our basis vectors.
n
M= &;d(X;).
j=1

- If we varied m in a perpendicular direction:
- We'll make the norm we're constraining bigger.
- We won't improve squared error.
This lets us reparameterize our problem in terms of these n inner products.
There's a solution that can be written like this.

m(z) = Z ajr(X;) b ()

k j=1

my,

The reparameterized problem

To estimate u(z), we take a weighted average of inner products between

- The basis vectors at the observed X;
- The basis vector ¢(z) at the point we're trying to predict.

All we've got to do is learn the n weights via least squares. That is, we predict
@) = Y a5 (8(X5), 3(x))
j=1

where

o
Il

|1 aséxp| <1
ie Yj/‘ m‘f;\

1 n n _ _
i — Y — g X5), X;
aiger[?m " Z:;]:ZI Oé]<¢(]) ¢()>2

- We've still got to compute inner products between infinite dimensional vectors.
- But that's all we have to do with them. The vectors only appear in inner products.
- Can we somehow do this without actually computing the vectors themselves?

The Kernel Trick

Suppose we knew how to evaluate these inner products—we’ve coded up a function.

<¢> , (e > is called a Kernel.

Then we are set. All we've got to compute is a ridge regression with n parameters.

Za, (X5,)

where
2
n n
&= argmin Z Y; — Za]—K Xi, X,
2 i=1 =1

ac
Z'ﬁj aia_’iK(Xj7XlC)S1

= argmin || Y — Ko|2 where K = K(X;, X;).
a€R™
aTKozgl

The Kernel Trick in General

We've done nothing specific to least squares here. Here's what we've used.

- We've minimizing a cost that depends on only two aspects of the curve m
1. Its values m(X1) ... m(X,) at the observed covariates
2. Its Sobolev norm ||m|| 7 = (Tm, m)

- And that it prefers that norm to be small.

That means it's enough to optimize over coefficients
my, spanned by the observed basis vectors q@(Xi).
Otherwise, we'd increase cost for no reason.

Conveniently

- The two aspects of m involved in our cost can be expressed
in terms of inner products between these basis vectors.
- And therefore in terms of the kernel.
ma(2) = > a($(X), $@)), and [mallr = Y @iy (3(X;), B(X))),
j

j=1 K(Xj,x) K(X;,X;)

Other Applications of the Kernel Trick

Support Vector Machine Classification

i = argmin — Zmax{o, Y;m(X;)} forlabels Y; € {&1}.
[lm] <1 i=1

It minimizes hinge loss, an approximation to classification error.
We classify based on the sign of (z).

Where this leaves us

If we're using a Sobolev model, least squares is easy if we know the model’s kernel.

K(@,a) = (3(a), $(a)), = D_A;" #u(@) du(a’):
k

Same goes for SVM Classification. Or more or less anything else.

One option is to just make up a kernel and use that.
- The downside is that you're using whatever model it happens to be the kernel for.

- You may not know what this model is, and if you did, you might not like it.
People who take this approach often use the Gaussian Kernel.
K(z,2') = exp(—||lz — '3)

This is the kernel for a model that includes only very smooth functions.
The result is very fast convergence to a very smooth approximation to what they want.

Where this leaves us

If we're using a Sobolev model, least squares is easy if we know the model’s kernel.

K(@,a') = (3(a), $(a)), = D_A;" #u(@) ou(a’):
k

Same goes for SYM Classification. Or more or less anything else.

Another option is to choose a model and compute its kernel exactly.

- There are techniques for this, but often you wind up with another hard problem.
- To evaluate the kernel K(z, z"), you'd maybe have to solve a differential equation.

- Sometimes this is fast, sometimes it's not.

Where this leaves us

If we're using a Sobolev model, least squares is easy if we know the model’s kernel.

K(@,a') = (3(a), $(a)), = D_A;" #u(@) du(a’):
k

Same goes for SVM Classification. Or more or less anything else.

A third option is to choose a model, then compute its kernel approximately.

- When you do this, you're effectively using a different model.
- You're using the model that your approximation is actually the kernel for.

- But if your approximation is good, that'll be pretty similar to the model you chose.

If you're using a popular model, usually someone’s done this already.

- This means you can look up the kernel — just google your model.
- But be a little careful.

- Often people aren't all that clear about what model it's really the kernel for.

Computing Kernels

The Sobolev Model in 1D

M = {m : <m', m'>L2 < 1} = {m: <—m", m>L2 < 1}

]38

K(z,2') = (mk)™2 V2 cos(mkz) V2 cos(mka')

=
Il

0

Ideas

The Sobolev Model in 1D

M = {m : <m', m'>L2 < 1} = {m: <—m", m>L2 < 1}

K(z,2') =

]38

(mk)™2 V2 cos(mkz) V2 cos(mka')

=
Il

0

Ideas

- Cosine product formula.
cos(a) cos(b) = {cos(a + b) + cos(a — b)}/2
- Integral approximation .
MCE 7 s
- Don't divide by zero—use a slightly different model.

. . d?
A\p = € + (mk)? is the kth eigenvalue of T = €% — =3

XL

- Let a computer integrate for us. | use wolfram alpha most of the time.
2[{?2

integrate cos(mkz)/(e2 + w2k?) for kfrom 0to co = ee~ €%l / 2¢2.

K(z,2') = i (€2 +72k2) " V2 cos(mkz) \/icos(ﬂkx/)

k=0

Formulas

cos(a) cos(b) = {cos(a+ b) + cos(a — b)}/2

o0
/ (€2 + 72k?) =" cos(mkz) = ee~¢*l / 2¢2.
0

- Implement it.

- Compare to the approximation-based approximation error we've been using to
check our approximation.

- Generalize to other models we might want to use.

- e.g. the Gaussian Sobolev Model.
- e.g. the Isotropic Multivariate Sobolev Model.

	Computing Kernels

