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Where We Left Things

µ̂ = argmin
m∈M

1
n

n∑
i=1

{Yi − m(Xi)}2 for a convex setM

M

Ms

μ

m

M\Ms

Ms

Claim. When Yi = µ(Xi) + εi for µ ∈ M and εi
iid∼ N(0, σ2),

‖µ̂−µ‖ < s w.p. 1 − δ if
s2

2

(a)
≥ E max

m∈M◦
s
〈ε, m − µ〉+sσ

√
2Σn

δn
for Σn = 1 + 2 log(2n).

What We Actually Proved.

‖µ̂− µ‖ < s whenever
s2

2

(b)
≥ max

m∈M◦
s
〈ε, m − µ〉

Loose End. w.p. 1 − δ, (a) =⇒ (b). That is, …

max
m∈M◦

s
〈ε, m − µ〉 ≤ E max

m∈M◦
s
〈ε, m − µ〉+ sσ

√
2Σn

δn
w.p. 1 − δ.
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Our Maximum is Approximately Constant

What we want to show.

Z = max
m∈M◦

s
〈ε, m − µ〉 satisfies Z ≤ EZ+sσ

√
2Σn

δn
w.p. 1−δ for Σn = 1 + 2 log(2n).

We’ll show something a bit stronger.

|Z − EZ | < sσ
√

2Σn

δn
w.p. 1 − δ.

This is implied by Chebyshev’s inequality. A special case of Markov’s inequality.

P
{
|Z − EZ | ≥

sd(Z)
√
δ

}
= P

{
|Z − EZ |2 ≥

Var(Z)

δ

}
≤

E|Z − EZ |2
Var(Z)

δ

=
Var(Z)
Var(Z)

δ

= δ.

All we need to do is bound the variance. We need to show that …

sd(Z)
√
δ

≤ sσ
√

2Σn

δn
i.e. Var(Z) ≤ s2σ2 2Σn

δn
.
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Variance and Independent Copies

Var[Z ] = Var[f (ε)] for f (u) = max
m∈M◦

s

n∑
i=1

ui{m(Xi)− µ(Xi)}.

• Z is a pretty complicated function of our noise vector ε. To bound its variance, …
• …we’ll need to think about it a bit differently than you’re probably used to.

Var[Z ] = E
[
{Z − E[Z ]}2

]
=

1
2
E

[{
Z − Z̃

}2
]

where Z and Z̃ are independent and identically distributed.

• It’s the mean squared deviation of Z from its expectation.
• And half of the mean squared deviation of Z from an independent copy of Z .

Let’s use all this to tackle a simplified version of our problem. We’ll lose the max. 4



Calculate Var[f (ε)] for f (u) =
n∑

i=1
ui .

We can do this calculation the ‘usual way’ with these independent copies.

Var [f (ε)] =
1
2
E

{ n∑
i=1

εi −
n∑

i=1
ε̃i

}2


=
1
2
E
[
{f (ε)− f (ε̃)}2

]

=
1
2
E

{ n∑
i=1

(εi − ε̃i)

}2


=
1
2
E

{ n∑
i=1

f
(
ε[i]

)
− f

(
ε[i−1]

)}2


=
1
2

n∑
i=1

n∑
j=1

E [(εi − ε̃i)(εj − ε̃j)]

=
1
2

n∑
i=1

n∑
j=1

E
[{

f
(
ε[i]

)
− f

(
ε[i−1]

)}{
f
(
ε[j]

)
− f

(
ε[j+1]

)}]

=
1
2

n∑
i=1

E
[
(εi − ε̃i)

2]

=
1
2

n∑
i=1

E

[{
f
(
ε[i]

)
− f

(
ε[i−1]

)}2
]

We can use our independent copies to write this more abstractly,
keeping everything ‘ inside’ our summing function f .

εi − ε̃i = (ε1 + . . .+ εi + ε̃i−1 + . . .+ ε̃n)− (ε1 + . . .+ εi−1 + ε̃i + . . .+ ε̃n)

= f
(
ε[i]

)
− f

(
ε[i−1]

)
where ε[i] =

(
ε1 ε2 . . . εi ε̃i+1 ε̃i+2 . . . ε̃n

)
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The Variance of Sums: Var[f (ε)] for f (u) =
∑n

i=1 ui

Var[f (ε)] =
1
2

n∑
i=1

E

[{
f
(
ε[i]

)
− f

(
ε[i−1]

)}2
]

for ε
[i]
j =

{
εj j ≤ i
ε̃j j > i

=
1
2

n∑
i=1

E

[{
f (ε)− f

(
ε(i)

)}2
]

for ε
(i)
j =

{
ε̃i j = i
εj j 6= i

We can derive the (simpler) second formula from the one we’ve just worked out.
Here’s the argument.

• The pair of vectors ε[i], ε[i−1] have the same joint distribution as ε, ε(i) .
• It follows that any functions of those pairs,

e.g. f
(
ε[i]

)
− f

(
ε[i−1]

)
and f (ε)− f (ε(i)),

have the same distribution. And therefore the same expectation.

How do we know our pairs have the same distribution?

• The first vectors, ε[i] and ε, have the same distribution.
• To get the second vector from the first, we do the same thing.
We replace the ith component with an independent copy.
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The Efron-Stein inequality: Var[f (ε)] for arbitrary f

Var [f (ε)] ≤
1
2

n∑
i=1

E

[{
f (ε)− f

(
ε(i)

)}2
]

for ε
(i)
j =

{
ε̃i j = i
εj j 6= i

• Something very cool happens when we write things this way.
• What we’ve derived isn’t just a new formula for the variance of a sum.
• It’s a variance bound for any function of a vector of independent random variables.

• We call this the Efron-Stein inequality.

• There’s an equivalent ‘positive part’ version that’s sometimes easier to use.

Var [f (ε)] ≤
n∑

i=1
E

[{
f (ε)− f

(
ε(i)

)}2

+

]
for {z}+ = max{z, 0}.

• This is nice because f (x) = {x}+2 is increasing (whereas f (x) = x2 is not).

• And that means we can substitute an upper bound for what’s inside it.

Var [f (ε)] ≤
n∑

i=1
E{Fi}2

+ ≤
n∑

i=1
EF2

i for Fi ≥ f (ε)− f
(
ε(i)

)
.
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The ‘Positive Part’ Efron-Stein inequality

Var [f (ε)] ≤
1
2

n∑
i=1

E

[{
f (ε)− f

(
ε(i)

)}2
]

=
n∑

i=1
E

[{
f (ε)− f

(
ε(i)

)}2

+

]
for {z}+ = max{z, 0}.

• What’s changed from the first formula to the second?
• The differences on the right have been replaced with their positive parts.
• We’ve lost the 1

2 to compensate.
• Why is this equivalent? Symmetry.
• For any random variable S with a symmetric distribution1 , ES2 = 2E{S}2

+ .

Proof.

S2 = {S}2
+ + {−S}2

+

= E{S}2
+ + E{−S}2

+

= 2E{S}2
+.

1A random variable S has a symmetric distribution if S and−S have the same distribution.
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The Variance of our Maximum

Var[f (ε)] ≤
n∑

i=1
E

[{
f (ε)− f

(
ε(i)

)}2

+

]
for f (x) = max

m∈M◦
s
〈x,m − µ〉

What do the terms on the right look like?

f (ε)− f
(
ε(i)

)
= max

m∈M◦
s
〈ε, m − µ〉 − max

m∈M◦
s

〈
ε(i), m − µ

〉
≤ 〈ε, m̂ − µ〉 −

〈
ε(i), m̂ − µ

〉
for m̂ = argmax

m∈M◦
s

〈ε, m − µ〉

=
〈
ε− ε(i), m̂ − µ

〉
=

1
n
{m̂(Xi)− µ(Xi)}(εi − ε̃i).

Plugging in these bounds, we get …

Var[f (ε)] ≤
1
n

× E
1
n

n∑
i=1

{m̂(Xi)− µ(Xi)}2

Ui

(εi − ε̃i)
2

Vi

=
1
n

× E〈U ,V 〉L2(Pn)

=
1
n

×
1
n

n∑
i=1

{m̂(Xi)− µ(Xi)}2 E max
i∈1...n

(εi − ε̃i)
2 =

1
n

× E‖U‖L1(Pn)‖V‖L∞(Pn).

=
1
n

× s2 × E max
i∈1...n

(εi − ε̃i)
2

≤
1
n

× s2 × 2σ2Σn for Σn = 1 + 2 log(2n).2

2Σn bounds the maximum of the squares of n independent standard normals.
Scaling by 2σ2 gives a bound for normals with variance Var[εi − ε̃i ] = 2σ2 . 9



A Proof of the Efron-Stein
inequality



A Variance Formula

Var [f (ε)] = E f (ε)2 − {E f (ε)}2

= E f (ε)2 − E f (ε) E f (ε̃)

= E f (ε){f (ε)− E f (ε)}

= E f (ε)
{ n∑

i=1
f
(
ε[i]

)
− f

(
ε[i−1]

)}

=
n∑

i=1
E f (ε)

{
f
(
ε[i]

)
− f

(
ε[i−1]

)}
where ε

[i]
j =

{
εj j ≤ i
ε̃j j > i
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The Swapping Trick

Var [f (ε)] =
n∑

i=1
E f (ε)

{
f
(
ε[i]

)
− f

(
ε[i−1]

)}
where ε

[i]
j =

{
εj j ≤ i
ε̃j j > i

• Think of the ith term as a function of ε: gi(ε) = f (ε)
{

f
(
ε[i]

)
− f

(
ε[i−1])}.

• Swapping εi → ε̃i doesn’t change the distribution of ε.

• So it doesn’t change the distribution — or expectation — of gi(ε).

Ai=gi(ε)

f (ε)
{

f
(
ε[i]

)
− f

(
ε[i−1]

)}
→

Bi=gi(ε
(i))

f (ε(i))
{

f
(
ε[i−1]

)
− f

(
ε̃[i]

)}
for ε̃

(i)
j =

{
ε̃i j = i
εj j 6= i

= −f (ε(i))
{

f
(
ε[i]

)
− f

(
ε[i−1]

)}
.

Because Ai = Bi = (Ai +Bi)/2, it follows that Var [f (ε)] = 1
2
∑n

i=1 E[Ai +Bi ] where

Ai + Bi =
{

f (ε)− f (ε(i))
}{

f
(
ε[i]

)
− f

(
ε[i−1]

)}
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Finishing Up

Var [f (ε)] =
1
2

n∑
i=1

E
[{

f (ε)− f (ε(i))
}{

f
(
ε[i]

)
− f

(
ε[i−1]

)}]
(a)
≤

1
2

√√√√ n∑
i=1

E
[{

f (ε)− f (ε(i))
}2

] n∑
i=1

E
[{

f
(
ε[i]

)
− f

(
ε[i−1])}2

]

(b)
=

1
2

√√√√{ n∑
i=1

E
[{

f (ε)− f (ε(i))
}2

]}2

=
1
2

n∑
i=1

E

[{
f (ε)− f (ε(i))

}2
]
.

The rest boils down to

(a) Using the 〈·, ·〉L2(P) Cauchy-Schwarz bound on each term in the sum.

(b) Our observation, from a few slides back, that {f (ε)− f (ε(i))}2

and {f
(
ε[i]

)
− f

(
ε[i−1])}2 have the same distribution.
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