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Where We Left Things
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Our Maximum is Approximately Constant

What we want to show.
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We'll show something a bit stronger.
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This is implied by Chebyshev's inequality. A special case of Markov's inequality.
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All we need to do is bound the variance. We need to show that ...

d(Z 2¥ . 2%
sd(2) <soy/ == Qe Var(2) < s202 "

Vi T sn - on



Variance and Independent Copies

n

Var[Z] = Var[f(e)] for f(u)= max ui{m(X;) — pu(Xi)}

- Z is a pretty complicated function of our noise vector €. To bound its variance, ...
- ..we'll need to think about it a bit differently than you're probably used to.

Var[Z] = E [{Z - E[Z}}Q]

N -
%E {{Z — Z} } where Z and Z are independent and identically distributed.

- It's the mean squared deviation of Z from its expectation.
- And half of the mean squared deviation of Z from an independent copy of Z.

Let's use all this to tackle a simplified version of our problem. We'll lose the max. 4



Calculate Var[f(e)] for f(u):iui.

We can do this calculation the ‘usual way’ with these independent copies.
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We can use our independent copies to write this more abstractly,
keeping everything ‘inside’ our summing function f.

ci—&=(E14+...+ei+éi—1+...+En)—(e1+...+&im1+E +...+En)
:f(EM) _f(a[ifl]) where EM = (61 B% ooo & 57;+1 Eit2
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Calculate  Var[f(e)] for f(u Zuz

We can do this calculation the ‘usual way’ with these independent copies.
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The Variance of Sums: Var[f(e)] for f(u) = > 7
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We can derive the (simpler) second formula from the one we've just worked out.
Here's the argument.

- The pair of vectors £[4, £[i=1] have the same joint distribution as e, e(.
- It follows that any functions of those pairs,

eg f(e) —s(f1) and f(e) - f(eD),
have the same distribution. And therefore the same expectation.
How do we know our pairs have the same distribution?

- The first vectors, €[? and ¢, have the same distribution.

- To get the second vector from the first, we do the same thing.
We replace the ith component with an independent copy.



The Efron-Stein inequality: Var[f(e)] for arbitrary f

Var[f(s)}g%;E[{f@—f(sm)ﬂ o E]@:{Z I

- Something very cool happens when we write things this way.

- What we've derived isn't just a new formula for the variance of a sum.
- It's a variance bound for any function of a vector of independent random variables.

- We call this the Efron-Stein inequality.

- There's an equivalent ‘positive part’ version that's sometimes easier to use.
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« This is nice because f(z) = {z}+2 is increasing (whereas f(z) = 22 is not).

- And that means we can substitute an upper bound for what's inside it.
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The ‘Positive Part’ Efron-Stein inequality
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; E {{f(a) = f<g<i)> }j for {z}; = max{z,0}.

- What's changed from the first formula to the second?
- The differences on the right have been replaced with their positive parts.
- We've lost the % to compensate.

- Why is this equivalent? Symmetry.
- For any random variable S with a symmetric distribution’, E S2 = 2E{S}2+.

Proof.
S* ={S}; +{-5}%

=E{S}] +E{-5}}
=2E{S}3.

A random variable S has a symmetric distribution if S and —S have the same distribution.



The Variance of our Maximum
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Plugging in these bounds, we get ...
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A Proof of the Efron-Stein
inequality




A Variance Formula
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The Swapping Trick

Var [f(¢)] = Xn:Ef(g){f(a[z‘]) _f(é.[ifl])} where ;Ei] _ {Ej j<i
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- Think of the ith term as a function of &: g;(¢) = f(e) {f(eld) — f(eli=1)}.
- Swapping €; — £€; doesn't change the distribution of .

- So it doesn’t change the distribution — or expectation — of g;(¢).
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Because A; = B; = (A; + B;)/2, it follows that Var [f(¢)] = 1 S°1 | E[A; + Bj] where

Ai+ B = {f(g) ,f(€<i>)}{f<gm) 7f<5[i71])}
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The rest boils down to

(a) Usingthe (., *) Lo (p) Cauchy-Schwarz bound on each term in the sum.

(b) Our observation, from a few slides back, that {f(e) — f(e(")}?
and {f (/1) — f(el*=11)}2 have the same distribution.



REEEES

- Sourav Chatterjee’s class Stein’s method and applications.
- The proof of the Efron-Stein inequality is based on lecture 10.
- Boucheron, Lugosi, and Massart's Concentration inequalities: A nonasymptotic
theory of independence.

+ The bound on the variance of the maximum mMaX,,ec pmo (e, m — p) is based on

Example 3.6 in Chapter 3.
+ The bound M,, on E max;ec1...n e? for e; & N(0,1) is from Lemma 11.3 in Chapter 11.


https://souravchatterjee.su.domains/AllLectures.pdf
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