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What do we know about the error of this least squares estimator j?

[i = argmin — Z{ Y; — m(X;)}? for convex M
memM T

Here's a simplified version you're proving for homework.
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on 20

where %, = ¢2{1 +2log(2n)} and w(V)= Emea\)}<<g, V) Ly (Pn)

if Vi=u(X;)+e: for e N©,0%) for peM



When Does This Bound Apply?
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When Does This Bound Apply?

In the top-left only.

- The second column is out. We've assumed p is in the model.
- The second row is out. We've assumed our noise is Gaussian.



When p isn’t in the model

We say our regression model is misspecified. When this happens, ...

- we estimate the model’s best approximation to u. Otherwise, not much changes.
- We'll bound the distance between that and our estimator the same way we've
been doing. 4



When our noise isn't Gaussian

If you think of least squares as a gaussian noise thing, our noise is misspecified.

- We'll compare the difficulty of this problem to regression with gaussian noise.
- The probabilistic classification problem shown above is no harder than
regression with gaussian noise with o = 1.25. 5



Misspecification



What happens when g isn’t in the model?

M\ M, M\ M,

A A

w L 4

- Our error in estimating p is bounded by a sum of two terms.

- The critical radius s, i.e, the one satisfying s? /20 > w(M?) + sy/ 220

- The distance from p to its best approximation in the model. Or really 3 times that.

We showed this in the model selection lab using the Cauchy-Schwarz inequality.

- In convex models, we can say more.
Our error in estimating p* does not depend on its distance to p.



Review

M
M\ M, M\ M,

o 1 &
@ i minimizes £(m) = = > {Y; — u(X)}*
=1
among curves m in a convex set M.

- If wisin the model, that tells us it's _ with loss as small as p's.

ie. m=p satisfies £(m) < () if pe M.

- To prove fi is in the neighborhood M, we show that ...

- ..none of_ SRl the neighborhood's complement PN

peM, it (m)>ep) forall me M\ M,.

- i.e. we show the loss difference is strictly positive for curves in [iislReelafoltInl=Ind

boundary Y

- That's true if it's positive for curves on [RisEREIE{alsleIaalole Lok

o(m) —L(p) >0 forall me M\ M, if £(m)>€(n) forall m e M.

- And that boils down to the neighborhood'’s squared radius exceeding ...
..twice its boundary's maximal inner product with noisee = Y —
o(m) —b(p) = s> —(Y —p, m—p) > s> —2 max(Y w, m—p) forall me M?
meM?

- Then we do a little probability and get our error bound. 7



The Argument with no if

For any u* € M, we can expand our mean squared error difference as before.
2 n
Um)—t(r*) = m—p* |}y, — = D eHm(X)—p* (X)) for e} = Yip*(Xy).
=1

But our new ‘noise’ e doesn't have mean zero. It's our old noise €;, minus something.

ef ={Yi— u(Xi)} — {p" (Xi) — n(Xa)}.

€ something

So we can think of our mean squared error difference as having three terms:

o(m) — o(u*) = lm — p* |12, p. squared distance, like before;
n
_2 Zgi {m(X;) — p*(X3)} a mean zero term, like before;
ni=
P = Z{u w( X)) H{m(X;) — p*(X;)}  and something else.

We can use our argument, ignoring the new term, if that term is always non-negative.

Why?



Why.

2
e(m) — £(u*) = lm — "2, e M
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250t () — (X (K — (X))
bim1 W

We want to show that if distance from m to p* is big enough, it wins.

- In particular, it wins in the sense that the loss difference £(m) — £(u*) is positive.
- That implies distance from f to p* is smaller, as distance doesn’t win in that case.

If this new term is non-negative, it helps distance win.

- If the loss difference is positive when we ignore a non-negative term ...
- ..then it's still positive when we don't.

. p 2 n
m) —£(w*) >0 i lim = I, e, — = D& {m(X) — p* (X0)} > 0
i=1

and 23" (X0) — (X Hm(X) — p* (X)) 2 0
i=1

This only works if the new term is non-negative. Can we choose p* € M so it is? 9



The new term is always non-negative when we compare
to the best approximation to p in the model,

) . 2 n N .
w* = ergminf|m — w3, 0 = 2t () — (X Hm(X) — w* (X}
=1

me
2 * *
—(u* —p,m—pu*)a >0 forall me M.
n
It's proportional to the dot product between two vectors: u — p* and = — m.

- When the model M is convex, these vectors are always in the same direction.
- They both point ‘in’ to the model. That means the dot product is non-negative.

10



M Claim. For any convex set M
in an inner product space,

\ w* = argmin|m — p|| satisfies

e | meM
(u* —p, m—p*) >0 forallcurves m e M.

Proof. Let my = A(m — pu*) + p*.

lma — pl> = (A(m — p*) + (u* — @), Am — p@*) + (u* — p))
= N2lm — p*[I? 4 l* = pll® + 20(m — p*, p* = p).

Because my € M, it follows that this is at least as large as ||u — p*||?, so
0 < N2|lm — p*||” + 2X\(m — p*, p* — p)

and therefore, dividing by A > 0, that
0 < Aljm — p*|| +2(m — p*, p* — ).

Because this holds for arbitrarily small A > 0, it must also hold for A = 0.

TAn inner product space is a vector space with a norm ||u|| = +/{w, wy induced by an inner product (u, v).




That's not true for other choices

When p* € M isn't the closest point to p,
these vectors can point in opposite directions.
That is, this dot product can be negative for some m € M.

M
m
\ :
X /
Y Iu‘

The same thing can happen for the closest point in a non-convex model.



When we use a convex model, the least squares estimator ji converges to the model’s
closest point to u. This generalizes our result without misspecification.

- If is in the model, that closest pointis pu.
- Otherwise, it's something else.

M\M,

We can bound our estimator’s distance to that closest point p* just like
we've been bounding distance to u when we assumed it was in the model.

Zn
on
for Ms={meM:|m—p .y <s} and X, =o{l+2log(2n)}

wp. 1—0 if s2/20 > w(My)

i —p* oy e,y < s+2

if V;=p(X;)+e for e i N(O,crz) for some function p. B



Misspecification

Examples
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Probabilistic Classification




What It Is

Suppose we have independent binary observations.

v, 41 WP u(X)
o w1 p(Xs)

L—p(X:)  wp. p(Xi)

= M(XL) + &5 for & = {—M(Xi) W.p. 1— M(Xl) '

We can think of this as regression with classification noise ;.

That's what's left after subtracting the mean p(X;) = E[Y;]. It has mean zero.

Elei] = p(Xi){1 — p(Xi)} + {1 — p(X)) H{-p(Xi)} = 0.

24



Starting Point: Our General Regression Error Bound

e(m) — ) = lm — w* 11, oy squared distance

2 n
= =3 e {m(x:) — pt (X))} a mean zero term
n
i=1

+ 23 () — (X Him(X:) — (X0}
i=1

M
M\M,
\ 4

¥

We can bound error using a corresponding width, no matter how noise is distributed.

2% 2
" owp 1-6 for
on 2

2
where  w<(V) = Emax(e, v and X, = E max ¢;.
V) 1/E(V< ) Lg(Pn) " i€ln b

o — 1y pn) < s+2 > we (M)

We can take s to be the point where the red and blue curves cross.

Q. How does this error bound compare to the one we get with Gaussian noise?
25



Error Bounds and Width Comparison

N . 23, s2
i —p" ey Py < s+2 T 1 -4 for - > we (M)

2
where  w.(V) = E]:]Ea\);(<67 V)Ly(Py) and ¥, = E7211dx &

We'll show that ‘classification-noise width’ is no larger than 1.25 x gaussian width.
1.25w(V) > we(V) foranyset V

This implies an error bound for probabilistic classifiction that's no worse

than the one we'd get with gaussian noise of standard deviation 1.25.
2
S

2
5 21BwM) = % > we(Ms).



This is a Multi-Step Comparison

We compare versions of this maximum with .... 27



Step 1. Symmetrization

Figure 11: Our data with noise e; and the symmetrized version ¢; — &,

We bound our maximum in terms of one involving symmetric noise.
We'll work with an independent copy &’ of our noise vector «.

n n
(a) /
E maxg s;v;:E;maxE e; —E.rel)v;
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n
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Step 1. Symmetrization with Random Signs

Figure 12: Our data with symmetrized noise e; — €/ and s;(e; — 7).
We introduce independent random signs s; = 1 w.p. 1/2, changing nothing.

n n

Es Esl max E (57; — E;)’Ui = Es Es Eel max E 87;(877 — E;)U,;.
veV £ 1 vEVY £ 1
1= 1=

29
Whyv Aaoc thic rhanoca nathinc?
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Step 1. About the Symmetrized Noise

Figure 13: Our data with noise €; and the symmetrized version ; — €/,

Our symmetrized noise, e; — €/, takes on 3 values: 0, +1, —1.

0 when g =¢
ei—e; =1+l when g;=1—pu(X;), ¢, = pn(Xy)
—1 when E; = H(Xi)7 E; =1- u(Xl)

That meanc the vertor of symmetric noice « — < 1cin the 11nit r11the [—1 117



Step 2. Contraction

We swap the order of our averages and think about the
inner average as a function of our vector of symmetric noise.

n n
E;E: E./ rvned\z’(z si(e; — 6;)1}1' =E:E./ E; 111}163.&(‘2 si(ei — 6;)1}1;
1= 1=

=E.E. f(e—¢') for f(u)=Es mast,uwl
i=1
< i f(u) because e—¢’ €[-1,1]™
we[—

That noise is in the unit cube [—1, 1]™, so we can bound
that function’s average over the noise by its maximum over the cube.



Step 2. Contraction and Convexity

n n
E; Ec E., max si(e; —el)v; < max w) for u) = Es max 85U V5
s Lug g/ ey ; 7,( 7 'L) 0= uE[fl,l]"f( ) f( ) s ey ; 7 Ug Ug

That function is convex.

What does that mean? These, for example, are all convex.

A =XNa+ b} < (1 —=N)f(a)+Af(b) for Xe€[0,1]. That's Convexity

32



Step 2. Contraction and Convexity

n
E;Ec.E./ ;glea‘);(;si( : )1}1_7 max f(u) for f(u)= Egmastlulvl
1=

€[-1,1]" veV
That function is convex.

How do we know? Maximizing each term is better than maximizing their sum.

A =XNa+ b} = Egmax{ ZszazvlJr)\Zszb vz}
§Es{max 1-=x Zslalvz-Q-maX)\ZSz zvv}

=(1-XE; Ill)lea;(z; sia;v; + AEg IqI}leaé(A z; 8;b;v;
1= 1=

= (1 =Nf(a) + A (b).

32



Step 2. Contraction and Convexity

n n
E;E:E i(e; — e < for — B, U Vg
BBy e S s, S0 1 S0 ~Boay3

That function is convex.

Why does this matter? The max of a convex function over a cube occurs at a corner.

And it's easy to characterize this maximum over corners. It's just random-sign width.

n n
max f(u) = max Egmax E siu;v; = Eg max E SiV;.
ue{—1,1}" ue{-1,1}" veV = veV o]

Why?

32



Why this maximum is just random-sign width.

n n
max Egmax E siu;v; = Egmax E SiV;.
ue{—1,1}" veEV — vEV =

- For u; € {—1, 1}, the distributions of u; and s;u; are the same.

- So the distribution of the sum, and its maximum, are the same at every corner u.

- i.e. this function f(u) takes on the same value at every corner.
- including the vector of all ones w = (1,1, ...,1).

33



Step 2. Contraction Visualized.

Y

Figure 14: Our data with symmetrized noise s;(e; — €}) and random-sign noise s;.

n n

E;s Ec B/ max E si(e; — eb)v; < Egmax E si(e; —eh)v;
vEVY £ 1 veY “£ 1
1= 1=

It makes sense that we’'d get a bigger average with (only) random signs.
In effect, we've replaced zero-noise observations (g; = %) with noisy ones.

34



Step 3. Comparison to Gaussian Width

/

Figure 15: Our data with random-sign noise s; and gaussian noise og; for o = 1.25

We can compare random-sign width to gaussian width. It's at most 1.25 times as big.

1
ws(V) <ow(V) foranyset V where o= = 1/E =3 175,
E|g:] 2

To show that, we use our ‘two+ maxes are better than one’ bound in reverse.

n n n
Emax E Ji; :ESE_(,HEL\))( E |gi|sivi > Esmgl‘))( E Eg|gi|sivi. &



With each step, width gets bigger.
That means probabilistic classification is easier than regression with ...

1. random sign noise, s; = £1 each w.p. 1/2.

2. gaussian noise og; of standard deviation o = 1.25.

Easier, at least, in the sense that our argument
gives us a better error bound.

N

S

521.25“’(,*\/1,9) > ws(Ms) > we(Ms)

36



People call random sign width, or something like it, Rademacher Complexity.

+1 wp. 1/2

Rademacher Complexity(V) = Emax(s, v for iid. s =
2 vEV< L2 (Pa) {—1 w.p. 1/2

or maybe = E
y 111}163‘3(|<S, ’U>L2(Pn)‘

- This second definition is the same if V is symmetric,ie. vE€Y — —v E V.
- Otherwise, it can be a little bigger.

- At most 2x bigger. Prove it!
- Use the bound max a, b < a + b and the symmetry of s's distribution.



Convex Functions Are Maximized At
Extreme Points




A function f is convex if secants lie above the curve.

F=Na+ b} < (1—N)f(a)+Af(b) for Xeo0,1]

We can give this a probabilistic interpretation for a random variable Z,.

f(EZ)) <Ef(Z\) where Zy=



A function f is convex if secants lie above the curve.

H@=X)a+ b} < (1 —=X)f(a) + Af(b) for Xe]0,1]

We can give this a probabilistic interpretation for a random variable Zy.

p. 1—X\
f(B2) <Ef(Z) where 2,=4% P
b w.p. A



Jensen’s Inequality

In fact, this is true all random variables Z.
If fis convex, its mean value exceeds its value at the mean.

fEZ) <Ef(2)

That's called Jensen's Inequality.

You can prove it for discrete random variables via induction.



Jensen’s Inequality Proof

Base case.
It's true for random variables taking on 2 values.

f()\lzl + >\222) < )\1f(2:1) + )\2f(22) if A1, A2 >0 Satisfy A1+ A=1

Inductive Step.
We'll show that if it's true for random variables taking on
n — 1 values, then it's also true for ones taking on n values.

n n—1 .
f{ZA'LZ’L} :f{(l_)\ﬂ)<z 1i\1)\ Zz) +)\nzn}
i=1 i=1 "

n—1

<(1- An)f(Z 1 :\i)\ Zz) + Anf(2n)

=il

n—1 )\7,
< (1= 2n) D0 75 f(20) + Anf (20)
i=1 "

n—1
= Z Nif (zi) + Anf(zn)
=1



Maxima of Convex Functions

Convex functions have no local maxima.

That means the maximum of a convex function over an interval occurs at an endpoint.
Proof.

Iren[%]f(l’) = max M@= XNa+ b} < Amax, (1 =N)f(a) + Af(b) = max{f(a), f(b)}

This is essentially true in higher dimensions as well.
We just need the right generalizations of interval and its endpoints.



Convex Polytopes

The natural generalizations a convex polytope and its extreme points.

Definitions.
A convex polytope is the set of all weighted averages of some set of vectors u; ... uk.

U={Z>\mi : )\GA} where A:{A : X, >0 forall 4 and ZAizl}

Its extreme points are the subset of these vectors that are not redundant.
That is, they're the ones we cannot write as weighted averages of the others.

Examples.
- Atriangle is the set of weighted averages of its three vertices, its extreme points.
- Asquare is the set of weighted averages of its four vertices, its extreme points.

- Acube in R™ is the set of weighted averages of its 2" vertices, its extreme points.



Maxima of Convex Functions over Polytopes

The maximum of a convex function over a convex polytope
occurs at an extreme point.

Proof.
It's more-or-less the same as the one-dimensional case.
We apply Jensen's inequality to a random extreme point Zy.

ma ) = pes (2 A) < g0 M) S mpxf(w)



	Misspecification
	Examples

	Probabilistic Classification
	Appendix
	Convex Functions Are Maximized At Extreme Points


