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Where We Left Off

M

Ms

μ

M\Ms

μ̂

What do we know about the error of this least squares estimator µ̂?

µ̂ = argmin
m∈M

1
n

n∑
i=1
{Yi −m(Xi)}2 for convex M

Here’s what we’ve proven in lecture.

‖µ̂− µ?‖L2(Pn) < s w.p. 1− δ for
s2

2σ
≥ w(M◦

s ) + s
√

2Σn

δn

where Σn = σ2{1 + 2 log(2n)} and w(V) = Emax
v∈V
〈g, v〉L2(Pn) for gi

iid∼ N(0, 1)

if Yi = µ(Xi) + εi for εi
iid∼ N(0, σ2) for µ ∈M
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Where We Left Off

M

Ms

μ

M\Ms

μ̂

What do we know about the error of this least squares estimator µ̂?

µ̂ = argmin
m∈M

1
n

n∑
i=1
{Yi −m(Xi)}2 for convex M

Here’s a simplified version you’re proving for homework.
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When Does This Bound Apply?
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When Does This Bound Apply?

In the top-left only.

• The second column is out. We’ve assumed µ is in the model.
• The second row is out. We’ve assumed our noise is Gaussian.
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When µ isn’t in the model

We say our regression model is misspecified. When this happens, …

• we estimate the model’s best approximation to µ. Otherwise, not much changes.
• We’ll bound the distance between that and our estimator the same way we’ve
been doing. 4



When our noise isn’t Gaussian

If you think of least squares as a gaussian noise thing, our noise is misspecified.

• We’ll compare the difficulty of this problem to regression with gaussian noise.
• The probabilistic classification problem shown above is no harder than
regression with gaussian noise with σ = 1.25. 5



Misspecification



What happens when µ isn’t in the model?

M

Ms μ⋆
μ

M\Ms

ˆ
μ

M

Ms
μ⋆
μ

M\Ms

ˆ

μ

• Our error in estimating µ is bounded by a sum of two terms.

• The critical radius s, i.e., the one satisfying s2/2σ ≥ w(M◦
s ) + s

√
2Σn
δn .

• The distance from µ to its best approximation in the model. Or really 3 times that.

We showed this in the model selection lab using the Cauchy-Schwarz inequality.

• In convex models, we can say more.
Our error in estimating µ? does not depend on its distance to µ.
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Review

M

Ms

μ

M\Ms

μ̂

M

Ms

μ

m

M\Ms

Ms

µ̂ minimizes

squared error loss

`(m) =
1
n

n∑
i=1

{Yi − µ(Xi)}2

among curves m in a convex set M.

• If µ is in the model, that tells us it’s one of the curves with loss as small as µ’s.

i.e. m = µ̂ satisfies `(m) ≤ `(µ) if µ ∈ M.

• To prove µ̂ is in the neighborhoodMs , we show that …

• …none of these curves is in the neighborhood’s complement M \ Ms .

µ̂ ∈ Ms if `(m) > `(µ) for all m ∈ M \ Ms.

• i.e. we show the loss difference is strictly positive for curves in the complement .

• That’s true if it’s positive for curves on the neighborhood’s boundary M◦
s .

`(m) − `(µ) > 0 for all m ∈ M \ Ms if `(m) > `(µ) for all m ∈ M◦
s .

• And that boils down to the neighborhood’s squared radius exceeding …
• …twice its boundary’s maximal inner product with noise ε = Y − m.

`(m)− `(µ) = s2 −〈Y − µ
ε

, m −µ〉 ≥ s2 − 2 max
m∈M◦

s
〈Y −µ, m −µ〉 for all m ∈ M◦

s

• Then we do a little probability and get our error bound. 7



The Argument with no if

For any µ? ∈M, we can expand our mean squared error difference as before.

`(m)−`(µ?) = ‖m−µ?‖2
L2(Pn)

−
2
n

n∑
i=1

ε?i {m(Xi)−µ?(Xi)} for ε?i = Yi−µ?(Xi).

But our new ‘noise’ ε?i doesn’t have mean zero. It’s our old noise εi , minus something.

ε?i = {Yi − µ(Xi)}
εi

− {µ?(Xi)− µ(Xi)}
something

.

So we can think of our mean squared error difference as having three terms:

`(m)− `(µ?) = ‖m − µ?‖2
L2(Pn)

squared distance, like before;

−
2
n

n∑
i=1

εi {m(Xi)− µ?(Xi)} a mean zero term, like before;

+
2
n

n∑
i=1
{µ?(Xi)− µ(Xi)}{m(Xi)− µ?(Xi)} and something else.

We can use our argument, ignoring the new term, if that term is always non-negative.

Why?
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Why.

`(m) − `(µ
?
) = ‖m − µ

?‖2
L2(Pn)

−
2
n

n∑
i=1

εi {m(Xi) − µ
?
(Xi)}

+
2
n

n∑
i=1

{µ?
(Xi) − µ(Xi)}{m(Xi) − µ

?
(Xi)}

M

Ms
μ⋆
μ

M\Ms

ˆ

μ

We want to show that if distance from m to µ? is big enough, it wins.

• In particular, it wins in the sense that the loss difference `(m)− `(µ?) is positive.
• That implies distance from µ̂ to µ? is smaller, as distance doesn’t win in that case.

If this new term is non-negative, it helps distance win.

• If the loss difference is positive when we ignore a non-negative term …
• …then it’s still positive when we don’t.

`(m) − `(µ
?
) > 0 if ‖m − µ

?‖2
L2(Pn) −

2
n

n∑
i=1

εi {m(Xi) − µ
?
(Xi)} > 0 what we’re used to

and
2
n

n∑
i=1

{µ?
(Xi) − µ(Xi)}{m(Xi) − µ

?
(Xi)} ≥ 0 new term

This only works if the new term is non-negative. Can we choose µ? ∈M so it is? 9



We can

M

μ⋆

m

μ

The new term is always non-negative when we compare
to the best approximation to µ in the model,

µ? = argmin
m∈M

‖m − µ‖2
L2(Pn)

satisfies
2
n

n∑
i=1
{µ?(Xi)− µ(Xi)}{m(Xi)− µ?(Xi)}

or in vector notation
2
n
〈µ? − µ,m − µ?〉2 ≥ 0 for all m ∈M.

It’s proportional to the dot product between two vectors: µ→ µ? and µ? → m.

• When the modelM is convex, these vectors are always in the same direction.
• They both point ‘ in’ to the model. That means the dot product is non-negative. 10



Proof

M

μ⋆

m

μ

Claim. For any convex setM
in an inner product space, 1

µ? = argmin
m∈M

‖m − µ‖ satisfies

〈µ? − µ, m − µ?〉 ≥ 0 for all curves m ∈M.

Proof. Let mλ = λ(m − µ?) + µ? .

‖mλ − µ‖2 = 〈λ(m − µ?) + (µ? − µ), λ(m − µ?) + (µ? − µ)〉

= λ2‖m − µ?‖2 + ‖µ? − µ‖2 + 2λ〈m − µ?, µ? − µ〉.

Because mλ ∈M, it follows that this is at least as large as ‖µ− µ?‖2 , so

0 ≤ λ2‖m − µ?‖2 + 2λ〈m − µ?, µ? − µ〉

and therefore, dividing by λ > 0, that

0 ≤ λ‖m − µ?‖2 + 2〈m − µ?, µ? − µ〉.

Because this holds for arbitrarily small λ > 0, it must also hold for λ = 0.
1An inner product space is a vector space with a norm ‖u‖ =

√
〈u, u〉 induced by an inner product 〈u, v〉.
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That’s not true for other choices

When µ? ∈M isn’t the closest point to µ,
these vectors can point in opposite directions.

That is, this dot product can be negative for some m ∈M.

M

μ⋆

m

μ

M

μ⋆
m

μ

The same thing can happen for the closest point in a non-convex model.
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Summary

When we use a convex model, the least squares estimator µ̂ converges to the model’s
closest point to µ. This generalizes our result without misspecification.

• If µ is in the model, that closest point is µ.
• Otherwise, it’s something else.

M

Ms
μ⋆
μ

M\Ms

ˆ

μ

We can bound our estimator’s distance to that closest point µ? just like
we’ve been bounding distance to µ when we assumed it was in the model.

‖µ̂− µ?‖L2(Pn) < s + 2
√

2Σn

δn
w.p. 1− δ if s2/2σ ≥ w(Ms)

for Ms =
{

m ∈M : ‖m − µ?‖L2(Pn) ≤ s
}

and Σn = σ{1 + 2 log(2n)}

if Yi = µ(Xi) + εi for εi
iid∼ N(0, σ2) for some function µ. 13



Misspecification

Examples



Figure 1: Increasing Curves (n = 100.)
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Figure 2: Increasing Curves (n = 400.)
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Figure 3: Decreasing Curves (n = 100.)
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Figure 4: Decreasing Curves (n = 400.)
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Figure 5: Bounded Variation Curves: ρTV ≤ 1 (n = 100.)
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Figure 6: Bounded Variation Curves: ρTV ≤ 1. (n = 400.)
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Figure 7: Lipschitz Curves: ρLip ≤ 1 (n = 100.)
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Figure 8: Lipschitz Curves: ρLip ≤ 1 (n = 400.)
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Figure 9: Concave Curves (n = 100.)
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θ

Figure 10: Concave Curves (n = 400.)
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Probabilistic Classification



What It Is

Suppose we have independent binary observations.

Yi =

{
1 w.p. µ(Xi)

0 w.p. 1− µ(Xi)

= µ(Xi) + εi for εi =

{
1− µ(Xi) w.p. µ(Xi)

−µ(Xi) w.p. 1− µ(Xi)
.

We can think of this as regression with classification noise εi .
That’s what’s left after subtracting the mean µ(Xi) = E[Yi ]. It has mean zero.

E[εi ] = µ(Xi){1− µ(Xi)}+ {1− µ(Xi)}{−µ(Xi)} = 0.
24



Starting Point: Our General Regression Error Bound

`(m) − `(µ
?
) = ‖m − µ

?‖2
L2(Pn) squared distance

−
2
n

n∑
i=1

εi {m(Xi) − µ
?
(Xi)} a mean zero term

+
2
n

n∑
i=1

{µ?
(Xi) − µ(Xi)}{m(Xi) − µ

?
(Xi)} a non-negative term.

M

Ms
μ⋆
μ

M\Ms

ˆ

μ

We can bound error using a corresponding width, no matter how noise is distributed.

‖µ̂ − µ
?‖L2(Pn) < s + 2

√
2Σn

δn
w.p. 1 − δ for

s2

2
≥ wε(Ms)

where wε(V) = Emax
v∈V

〈ε, v〉L2(Pn) and Σn = E max
i∈1...n

ε
2
i .

We can take s to be the point where the red and blue curves cross.
Q. How does this error bound compare to the one we get with Gaussian noise?
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Error Bounds and Width Comparison

‖µ̂ − µ
?‖L2(Pn) < s + 2

√
2Σn

δn
w.p. 1 − δ for

s2

2
≥ wε(Ms)

where wε(V) = Emax
v∈V

〈ε, v〉L2(Pn) and Σn = E max
i∈1...n

ε
2
i .

We’ll show that ‘classification-noise width’ is no larger than 1.25× gaussian width.

1.25w(V) ≥ wε(V) for any set V

This implies an error bound for probabilistic classifiction that’s no worse
than the one we’d get with gaussian noise of standard deviation 1.25.

s2

2
≥ 1.25w(Ms) =⇒

s2

2
≥ wε(Ms).
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This is a Multi-Step Comparison

We compare versions of this maximum with ….

Top Left. Our original noise, εi .
→ Symmetrized noise, εi − ε′i where ε′ is an independent copy of ε.
↓ Random-sign noise si = ±1 each w.p. 1/2.
← Gaussian noise gi ∼ N(0, σ2) for σ =

√
π/2 ≈ 1.25.
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Step 1. Symmetrization

Figure 11: Our data with noise εi and the symmetrized version εi − ε′i

We bound our maximum in terms of one involving symmetric noise.
We’ll work with an independent copy ε′ of our noise vector ε.

Eε max
v∈V

n∑
i=1

εivi
(a)
= Eε max

v∈V

n∑
i=1

(εi − Eε′ ε
′
i)vi

(b)
= Eε max

v∈V
Eε′

n∑
i=1

(εi − ε′i)vi

(c)
≤ Eε Eε′ max

v∈V

n∑
i=1

(εi − ε′i)vi .

Why do these steps work?

(a) Eε′ ε
′
i = 0.

(b) Expectation is linear.
(c) Maximizing the average gives us something smaller than averaging the maxima.

• In (c), we choose the maximizing v ∈ V for each ε′ .
• If we wanted to choose the same one each time, like we do in (b), we could.
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Step 1’. Symmetrization with Random Signs

µ + 2ε

Y

µ

m

|| m−mu || / 2 sigma

Figure 12: Our data with symmetrized noise εi − ε′i and si(εi − ε′i).

We introduce independent random signs si = ±1 w.p. 1/2, changing nothing.

Eε Eε′ max
v∈V

n∑
i=1

(εi − ε′i)vi = Es Eε Eε′ max
v∈V

n∑
i=1

si(εi − ε′i)vi .

Why does this change nothing?

• Because the inner mean (Eε Eε′ ) doesn’t depend on the signs si .
• That’s because εi and ε′i have the same distribution.
• And this implies (εi − ε′i) and (ε′i − ε) = −(εi − ε′i) do, too.

29



Step 1’. Symmetrization with Random Signs

µ + 2ε

Y

µ

m

|| m−mu || / 2 sigma

Figure 12: Our data with symmetrized noise εi − ε′i and si(εi − ε′i).

We introduce independent random signs si = ±1 w.p. 1/2, changing nothing.

Eε Eε′ max
v∈V

n∑
i=1

(εi − ε′i)vi = Es Eε Eε′ max
v∈V

n∑
i=1

si(εi − ε′i)vi .

Why does this change nothing?

• Because the inner mean (Eε Eε′ ) doesn’t depend on the signs si .
• That’s because εi and ε′i have the same distribution.
• And this implies (εi − ε′i) and (ε′i − ε) = −(εi − ε′i) do, too.

29



Step 1. About the Symmetrized Noise

µ + 2ε

Y

µ

m

µ

Y

µ + 2ε

m

Figure 13: Our data with noise εi and the symmetrized version εi − ε′i

Our symmetrized noise, εi − ε′i takes on 3 values: 0,+1,−1.

εi − ε′i =


0 when εi = ε′i

+1 when εi = 1− µ(Xi), ε′i = µ(Xi)

−1 when εi = µ(Xi), ε′i = 1− µ(Xi).

That means the vector of symmetric noise, ε− ε′ , is in the unit cube [−1, 1]n .
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Step 2. Contraction

We swap the order of our averages and think about the
inner average as a function of our vector of symmetric noise.

Es Eε Eε′ max
v∈V

n∑
i=1

si(εi − ε′i)vi = Eε Eε′ Es max
v∈V

n∑
i=1

si(εi − ε′i)vi

= Eε Eε′ f (ε− ε′) for f (u) = Es max
v∈V

n∑
i=1

siuivi

≤ max
u∈[−1,1]n

f (u) because ε− ε′ ∈ [−1, 1]n .

That noise is in the unit cube [−1, 1]n , so we can bound
that function’s average over the noise by its maximum over the cube.
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Step 2. Contraction and Convexity

Es Eε Eε′ max
v∈V

n∑
i=1

si(εi − ε′i)vi ≤ max
u∈[−1,1]n

f (u) for f (u) = Es max
v∈V

n∑
i=1

siuivi

That function is convex.

What does that mean? These, for example, are all convex.

f {(1− λ)a + λb} ≤ (1− λ)f (a) + λf (b) for λ ∈ [0, 1]. That’s Convexity
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Step 2. Contraction and Convexity

Es Eε Eε′ max
v∈V

n∑
i=1

si(εi − ε′i)vi ≤ max
u∈[−1,1]n

f (u) for f (u) = Es max
v∈V

n∑
i=1

siuivi

That function is convex.

How do we know? Maximizing each term is better than maximizing their sum.

f {(1− λ)a + λb} = Es max
v∈V

{
(1− λ)

n∑
i=1

siaivi + λ
n∑

i=1
sibivi

}

≤ Es

{
max
v∈V

(1− λ)
n∑

i=1
siaivi +max

v∈V
λ

n∑
i=1

sibivi

}

= (1− λ) Es max
v∈V

n∑
i=1

siaivi + λEs max
v∈V

λ
n∑

i=1
sibivi

= (1− λ)f (a) + λf (b).
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Step 2. Contraction and Convexity

Es Eε Eε′ max
v∈V

n∑
i=1

si(εi − ε′i)vi ≤ max
u∈[−1,1]n

f (u) for f (u) = Es max
v∈V

n∑
i=1

siuivi

That function is convex.

Why does this matter? The max of a convex function over a cube occurs at a corner.

And it’s easy to characterize this maximum over corners. It’s just random-sign width.

max
u∈{−1,1}n

f (u) = max
u∈{−1,1}n

Es max
v∈V

n∑
i=1

siuivi = Es max
v∈V

n∑
i=1

sivi .

Why? Hint. What’s the distribution of si? And siui for ui ∈ {−1, 1}?
32



Why this maximum is just random-sign width.

max
u∈{−1,1}n

f (u)

Es max
v∈V

n∑
i=1

siuivi =

f (1,1,...,1)

Es max
v∈V

n∑
i=1

sivi .

• For ui ∈ {−1, 1}, the distributions of ui and siui are the same.

• So the distribution of the sum, and its maximum, are the same at every corner u.
• i.e. this function f (u) takes on the same value at every corner.
• including the vector of all ones u = (1, 1, . . . , 1).
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Step 2. Contraction Visualized.

µ

Y

µ + 2ε

m

µ+2ε

Y

µ

m

Figure 14: Our data with symmetrized noise si(εi − ε′i) and random-sign noise si .

Es Eε Eε′ max
v∈V

n∑
i=1

si(εi − ε′i)vi ≤ Es max
v∈V

n∑
i=1

si(εi − ε′i)vi

It makes sense that we’d get a bigger average with (only) random signs.
In effect, we’ve replaced zero-noise observations (εi = ε′i) with noisy ones.
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Step 3. Comparison to Gaussian Width

µ

Y

µ + 2ε

m

µ + 2ε

Y

µ

m

Figure 15: Our data with random-sign noise si and gaussian noise σgi for σ = 1.25

We can compare random-sign width to gaussian width. It’s at most 1.25 times as big.

ws(V) ≤ σw(V) for any set V where σ =
1

E|gi |
=

√
π

2
≈ 1.25.

To show that, we use our ‘two+ maxes are better than one’ bound in reverse.

Emax
v∈V

n∑
i=1

givi = Es Eg max
v∈V

n∑
i=1
|gi |sivi ≥ Es max

v∈V

n∑
i=1

Eg|gi |
=
√

2
π

sivi .
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Summary

µ

Y

µ + 2ε
m

µ
+

2ε
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With each step, width gets bigger.
That means probabilistic classification is easier than regression with …

1. random sign noise, si = ±1 each w.p. 1/2.

2. gaussian noise σgi of standard deviation σ = 1.25.

Easier, at least, in the sense that our argument
gives us a better error bound.

s2

2
≥ 1.25w(Ms)

=⇒
≥ ws(Ms)

=⇒
≥ wε(Ms)
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Terminology

People call random sign width, or something like it, Rademacher Complexity.

Rademacher Complexity(V)
ws(V)

= Emax
v∈V
〈s, v〉L2(Pn) for i.i.d. si =

{
+1 w.p. 1/2
−1 w.p. 1/2

or maybe = Emax
v∈V

∣∣〈s, v〉L2(Pn)

∣∣
• This second definition is the same if V is symmetric, i.e. v ∈ V =⇒ −v ∈ V .
• Otherwise, it can be a little bigger.

• At most 2× bigger. Prove it!
• Use the boundmax a, b ≤ a + b and the symmetry of s’s distribution.



Convex Functions Are Maximized At
Extreme Points



Definition

A function f is convex if secants lie above the curve.

f {(1− λ)a + λb} ≤ (1− λ)f (a) + λf (b) for λ ∈ [0, 1]

We can give this a probabilistic interpretation for a random variable Zλ .

f (EZλ) ≤ E f (Zλ) where Zλ =
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A function f is convex if secants lie above the curve.

f {(1− λ)a + λb} ≤ (1− λ)f (a) + λf (b) for λ ∈ [0, 1]

We can give this a probabilistic interpretation for a random variable Zλ .

f (EZλ) ≤ E f (Zλ) where Zλ =

{
a w.p. 1− λ

b w.p. λ



Jensen’s Inequality

In fact, this is true all random variables Z .
If f is convex, its mean value exceeds its value at the mean.

f (EZ) ≤ E f (Z)

That’s called Jensen’s Inequality.

You can prove it for discrete random variables via induction.



Jensen’s Inequality Proof

Base case.
It’s true for random variables taking on 2 values.

f (λ1z1 + λ2z2) ≤ λ1f (z1) + λ2f (z2) if λ1, λ2 ≥ 0 satisfy λ1 + λ2 = 1

Inductive Step.
We’ll show that if it’s true for random variables taking on

n − 1 values, then it’s also true for ones taking on n values.

f
{ n∑

i=1
λizi

}
= f
{
(1− λn)

(n−1∑
i=1

λi

1− λn
zi

)
+ λnzn

}

≤ (1− λn)f
(n−1∑

i=1

λi

1− λn
zi

)
+ λnf (zn)

≤ (1− λn)
n−1∑
i=1

λi

1− λn
f (zi) + λnf (zn)

=

n−1∑
i=1

λif (zi) + λnf (zn)



Maxima of Convex Functions

Convex functions have no local maxima.

That means the maximum of a convex function over an interval occurs at an endpoint.
Proof.

max
x∈[a,b]

f (x) = max
λ∈[0,1]

f {(1− λ)a + λb}
f (E Zλ)

≤ max
λ∈[0,1]

(1− λ)f (a) + λf (b)
E f (Zλ)

= max{f (a), f (b)}

This is essentially true in higher dimensions as well.
We just need the right generalizations of interval and its endpoints.



Convex Polytopes

The natural generalizations a convex polytope and its extreme points.

Definitions.
A convex polytope is the set of all weighted averages of some set of vectors u1 . . . uK .

U =

{∑
i

λiui : λ ∈ Λ

}
where Λ =

{
λ : λi ≥ 0 for all i and

∑
i

λi = 1
}

Its extreme points are the subset of these vectors that are not redundant.
That is, they’re the ones we cannot write as weighted averages of the others.

Examples.

• A triangle is the set of weighted averages of its three vertices, its extreme points.

• A square is the set of weighted averages of its four vertices, its extreme points.

• A cube in Rn is the set of weighted averages of its 2n vertices, its extreme points.



Maxima of Convex Functions over Polytopes

The maximum of a convex function over a convex polytope
occurs at an extreme point.

Proof.
It’s more-or-less the same as the one-dimensional case.

We apply Jensen’s inequality to a random extreme point Zλ .

max
u∈U

f (u) = max
λ∈Λ

f
(∑

i
λiui

)
f (E Zλ)

≤ max
λ∈Λ

∑
i

λif (ui)

E f (Zλ)

≤ max
i

f (ui)

where

Zλ =


u1 w.p. λ1
...

...
uK w.p. λK
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