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Least Squares Review



What we’ve been doing
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We started with a curve µ(x).
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What we’ve been doing
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We sampled it at some points Xi .

Yi = µ(Xi)
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What we’ve been doing
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We added noise to get our observations.

Yi = µ(Xi) + εi
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What we’ve been doing
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We fit a curve, e.g. an increasing one, via least squares.

µ̂ = argmin
increasing m

1
n

n∑
i=1

{Yi − m(Xi)}2.
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What we’ve been doing
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We compared the curve we fit to the curve we started with.
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What we’ve been doing
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We looked at mean squared distance over the whole interval.

PMSE =

∫ 1

0
{µ(x)− µ̂(x)}2dx
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What we’ve been doing
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And at mean squared distance over the sample.

SMSE =
1
n

n∑
i=1

{µ(Xi)− µ̂(Xi)}2
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What we’ve been doing

−1

0

1

2

0.00 0.25 0.50 0.75 1.00

And at squared distance at the left endpoint x = 0.

MSE0 = {µ(0)− µ̂(0)}2
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What we’ve been doing
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We could do all of this because we were using fake data.
We knew the curve µ that we’d sampled.
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Working with real data is different

−1

0

1

2

0.00 0.25 0.50 0.75 1.00

What we start with is the data.
We don’t see any underlying curve µ.
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Working with real data is different
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We can, of course, still fit a curve.
But what are we supposed to compare it to?

What curve are we trying to estimate?
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What least squares estimates

The error we minimize, in large samples, approximates its expectation.

1
n

n∑
i=1

{Yi − m(Xi)}2 → E{Yi − m(Xi)}2

So what we might hope for is to estimate the curve µ minimizing that.
That’s the conditional mean µ(x) = E[Yi | Xi = x].

It’s the curve giving the mean value of Yi at every value of Xi .
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How do we know that?

Let’s see what happens when we break Yi into µ(Xi) and what’s left over.
What’s left over plays the role of our noise εi . What do we know about it?

Yi = µ(Xi) + εi where ?

Now let’s use this to break down what we’re minimizing.

E{Yi − m(Xi)}2 = E{εi + µ(Xi)− m(Xi)}2

= E ε2
i + 2E εi{µ(Xi)− m(Xi)}+ E{µ(Xi)− m(Xi)}2

Why does this tell us the minimizer is µ?

As we vary m, it’s …

• a constant
• plus zero
• plus a positive term that’s zero only if m = µ
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Signal and Noise in Least Squares Regression

If everything goes right, we’ll approximate the conditional mean.

µ(x) = E[Yi | Xi = x]

That’s the signal we’re trying to recover.
The noise it hides in has mean zero at each Xi .

This noise can be symmetric.
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0.00 0.25 0.50 0.75 1.00Observations Yi around µ(x) and noise εi around zero (left to right).

Yi = Xi + εi where εi ∼ Uniform(−1, 1)
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Signal and Noise in Least Squares Regression

If everything goes right, we’ll approximate the conditional mean.

µ(x) = E[Yi | Xi = x]

That’s the signal we’re trying to recover.
The noise it hides in has mean zero at each Xi .

It can be asymmetric.
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Yi = Xi + εi where εi ∼
{
Uniform(0, 2) with probability 1/3
Uniform(−1, 0) with probability 2/3 6



Signal and Noise in Least Squares Regression

If everything goes right, we’ll approximate the conditional mean.

µ(x) = E[Yi | Xi = x]

That’s the signal we’re trying to recover.
The noise it hides in has mean zero at each Xi .

It can be very asymmetric.
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0.00 0.25 0.50 0.75 1.00Observations Yi around µ(x) and noise εi around zero (left to right).

Yi = Xi + εi where εi ∼
{

1 − µ(Xi) with probability µ(Xi)

−µ(Xi) with probability 1 − µ(Xi) 6



What if we don’t want to estimate the conditional mean?

We’ll have to do something else.

There are many things to estimate and many ways to estimate them.
This week, we’ll estimate personalized treatment effects using the R-Learner.
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Personalized Treatment Effects



Context. Who did the NSW Job Training Program increase income for?

• The NSW program was implemented in the mid-1970s.

• It provided work experience and counseling for a period of 9-18 months.
• It enrolled people who tended to have difficulty with employment, e.g.,

• People who’d been convicted of crimes
• People who’d been addicted to drugs
• People who’d not completed high school

• These participants were randomly assigned to the control or treatment groups.

• Both groups were interviewed, only the treated were given these short-term jobs.

• We want know who the treatment helps.

Specifics

• We’re looking at income in 1978, after the program ended.

• We’re interested in the impact of treatment on this.

• And we want to estimate the average effect of this treatment
among participants with a given 1974 income.
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Identification

Due to randomization, this is conceptually simple.

• We want to compare each participant to an imaginary version of themself—one
that got a different treatment—then average over folks with the same 1974 income.

• But given randomization, this is equivalent to a real comparison.
• If there’s no difference, on average, between participants with identical
1974 incomes, we can swap in a real participant for our imaginary one.

• That’s the case when all participants with the same ’74 income
receive treatment vs. control with the same probability.

What we want is to compare two conditional means.

τ(x) = E[Yi(1) | Xi = x]− E[Yi(0) | Xi = x] participant vs imaginary version of self

= E[Yi | Wi = 1,Xi = x]
µ(0,x)

− E[Yi | Wi = 0,Xi = x]
µ(1,x)

participant vs one w/ same ’74 income
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• µ(1, x), the mean for treated
participants with 1974 income x

• µ(0, x), the mean for untreated
participants with 1974 income x
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Our income-specific treatment effect is a difference of two conditional means.

τ(x) = µ(1, x)− µ(0, x)

0.25

0.50

0.75

1.00

1.25

0.00 0.25 0.50 0.75 1.00

In this fake data, all participants
receive treatment with probability 1/2.
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receive treatment with probability 1/2.
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In this fake data, participants with lower ’74 incomes
receive treatment more often than those with higher ’74 incomes.

10



Our income-specific treatment effect is a difference of two conditional means.
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In this fake data, participants with lower ’74 incomes
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Naive Approach

We estimate the conditional mean for each treatment group, then subtract.

τ̂(x) = µ̂(1, x)− µ̂(0, x)

0.25

0.50

0.75

1.00

1.25

0.00 0.25 0.50 0.75 1.00

Here we’ve fit increasing curves to each group via least squares.

µ̂(w, ·) = argmin
increasing m

∑
i:Wi=w

{Yi − m(Xi)}2 for w ∈ {0, 1}.
11



What we don’t like about it

• We have to estimate two treatment-specific conditional means.

• If we don’t estimate one well, we tend to get a bad treatment effect estimate.

• It’s hard to encode assumptions about the treatment effect
itself in our model for these conditional means.

• e.g. constancy, τ(x) = τ .
• e.g. approximate constancy, ρTV (τ) ≈ 0.
• e.g. decreasingness, τ ′(x) ≤ 0.

Let’s try to fix that.
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Starting Point: Robinson’s Decomposition

We express our treatment-specific conditional means in terms of a few other things.

µ(Wi ,Xi) = β(Xi) + {Wi − π(Xi)}τ(Xi) where

β(Xi) = E[Yi | Xi ] is the (nonspecific) conditional mean,

π(Xi) = P(Wi = 1 | Xi), is the conditional treatment probability,

τ(Xi) = E[Yi | Wi = 1,Xi ]− E[Yi | Wi = 0,Xi ] is the conditional treatment effect.

Derivation. We start with a characterization of β(Xi) as a marginal of µ(Wi ,Xi).

β(Xi) = E[Yi | Xi ]

= E[Yi | Wi = 1,Xi ]P(Wi = 1 | Xi) + E[Yi | Wi = 0,Xi ]P(Wi = 0 | Xi)

= µ(1,Xi)π(Xi) + µ(0,Xi){1 − π(Xi)}.

Then we plug it in.

β(Xi) + {Wi − π(Xi)}τ(Xi)

= µ(1,Xi)π(Xi) + µ(0,Xi){1 − π(Xi)}+ {Wi − π(Xi)}{µ(1,Xi)− µ(0,Xi)}

= µ(1,Xi){π(Xi) + Wi − π(Xi)}+ µ(Xi , 0)[{1 − π(Xi)} − {Wi − π(Xi)}]

= µ(1,Xi)Wi + µ(0,Xi)(1 − Wi) = µ(Xi ,Wi).
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The R-Learner idea

µ(Wi ,Xi) = β(Xi) + {Wi − π(Xi)}τ(Xi) where

β(Xi) = E[Yi | Xi ] is the (nonspecific) conditional mean,

π(Xi) = P(Wi = 1 | Xi), is the conditional treatment probability,

τ(Xi) = E[Yi | Wi = 1,Xi ]− E[Yi | Wi = 0,Xi ] is the conditional treatment effect.

If we knew the functions β and π, we could estimate τ using a special model.

τ̂ = argmin
t∈Mτ

1
n

n∑
i=1

{Yi − mt(Wi ,Xi)}2 where mt(w, x) = β(x) + [w − π(x)]t(x).

This is a weighted least squares estimate of τ based on a pseudo-outcome Y τ
i .

To show this, let’s decompose the error Yi − mt(Wi ,Xi) in terms
of the functions above, then plug the result into our least squares loss.
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The R-Learner idea
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{Yi − mt(Wi ,Xi)}2 where mt(w, x) = β(x) + [w − π(x)]t(x).

This is a weighted least squares estimate of τ based on a pseudo-outcome Y τ
i .

Yi − mt(Wi ,Xi) = [β(Xi) + {Wi − π(Xi)}τ(Xi) + εi ]− [β(Xi) + {Wi − π(Xi)}t(Xi)]

= {Wi − π(Xi)}{τ(Xi)− t(Xi)}+ εi

= {Wi − π(Xi)}{τ(Xi) + ετi − t(Xi)} where ετi =
εi

Wi − π(Xi)
.

so what we’d minimize is weighted squared error for predicting Y τ
i .

τ̂ = argmin
t∈Mτ

1
n

n∑
i=1

{Wi − π(Xi)}2{Y τ
i − t(Xi)}2 where Y τ

i = τ(Xi) + ετi .
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Our Pseudo-Outcomes

τ̂ = argmin
t∈Mτ

1
n

n∑
i=1

{Wi − π(Xi)}2{Y τ
i − t(Xi)}2 where Y τ

i = τ(Xi) + ετi .
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Pseudo-outcomes Y τ
i when all participants receive treatment with probability 1/2.
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Pseudo-outcomes Y τ
i when participants with lower ’74 incomes
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The real R-Learner

τ̂? = argmin
t∈Mτ

1
n

n∑
i=1

{Yi − mt(Wi ,Xi)}2 where mt(w, x) = β(x) + [w − π(x)]t(x)

• This is what we’ve been talking about doing.

• But we can’t really do it because we don’t know the nuisance function β.

• That’s why it’s a nuisance. We need to know it, even if we’re not interested in it.

• To actually use the R-Learner, we’ll have to substitute an estimate.

τ̂ = argmin
t∈Mτ

1
n

n∑
i=1

{Yi − mt(Wi ,Xi)}2 where mt(w, x) = β̂(x) + [w − π(x)]t(x)

and β̂ = argmin
b∈Mβ

1
n

n∑
i=1

{Yi − b(Xi)}2
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The real R-Learner as least squares

τ̂ = argmin
t∈Mτ

1
n

n∑
i=1

{Yi − mt(Wi ,Xi)}2 where mt(w, x) = β̂(x) + [w − π(x)]t(x)

This is another weighted least squares estimate of τ .

Yi − mt(Wi ,Xi) = [β(Xi) + {Wi − π(Xi)}τ(Xi) + εi ]−
[
β̂(Xi) + {Wi − π(Xi)}t(Xi)

]
= {Wi − π(Xi)}{τ(Xi)− t(Xi)}+ {β(Xi)− β̂(Xi)}+ εi

= {Wi − π(Xi)}{τ(Xi) + ετi + δi − t(Xi)} where δi =
β(Xi)− β̂(Xi)

Wi − π(Xi)

we’re minimizing weighted squared error for predicting a corrupted pseudo-outcome.

τ̂ = argmin
t∈Mτ

1
n

n∑
i=1

{Wi − π(Xi)}2{Y τ
i + δi − t(Xi)}2 where Y τ

i = τ(Xi) + ετi .

17



The real R-Learner as least squares

τ̂ = argmin
t∈Mτ

1
n

n∑
i=1

{Yi − mt(Wi ,Xi)}2 where mt(w, x) = β̂(x) + [w − π(x)]t(x)

This is another weighted least squares estimate of τ .

Yi − mt(Wi ,Xi) = [β(Xi) + {Wi − π(Xi)}τ(Xi) + εi ]−
[
β̂(Xi) + {Wi − π(Xi)}t(Xi)

]
= {Wi − π(Xi)}{τ(Xi)− t(Xi)}+ {β(Xi)− β̂(Xi)}+ εi

= {Wi − π(Xi)}{τ(Xi) + ετi + δi − t(Xi)} where δi =
β(Xi)− β̂(Xi)

Wi − π(Xi)

we’re minimizing weighted squared error for predicting a corrupted pseudo-outcome.

τ̂ = argmin
t∈Mτ

1
n

n∑
i=1

{Wi − π(Xi)}2{Y τ
i + δi − t(Xi)}2 where Y τ

i = τ(Xi) + ετi .

17



The corrupted pseudo-outcome

τ̂ = argmin
t∈Mτ

1
n

n∑
i=1

{Wi − π(Xi)}2{Y τ
i + δi − t(Xi)}2 where Y τ

i = τ(Xi) + ετi .
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When all participants receive treatment with probability 1/2.
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The corrupted pseudo-outcome

τ̂ = argmin
t∈Mτ

1
n

n∑
i=1

{Wi − π(Xi)}2{Y τ
i + δi − t(Xi)}2 where Y τ

i = τ(Xi) + ετi .
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When participants with lower ’74 incomes receive treatment
more often than those with higher ’74 incomes. 18



Robustness
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• One very interesting property of the R-Learner is that it’s insensitive to β̂.
• That is, it works well even if β̂ is a pretty bad estimate.
• Or, at least, it works almost as well as a version using β itself.

• That is, we estimate τ essentially as if we were doing
weighted least squares prediction of the pseudo-outcomes.

• The ’corruption’ of the pseudo-outcomes we really learn to predict isn’t a big deal.
• We’re using our knowledge about the treatment probability π(x) to help us.

• Let’s look at how this works for a very simple treatment effect modelMτ .
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An Exercise

Show that, in the case that we use the constant treatment effect model
Mτ = {t(x) = c : c ∈ R}, these two versions of the R-learner differ by a term that’s
small relative to 1/

√
n as long as β̂ → β. That is, show that

√
n(τ̂β̂ − τ̂β) → 0 if β̂ → β

for

τ̂β̂ = argmin
t∈R

1
n

n∑
i=1

{Yi − mt(Wi ,Xi)}2 where mt(w, x) = β̂(x) + [w − π(x)]t

τ̂β = argmin
t∈R

1
n

n∑
i=1

{Yi − mt(Wi ,Xi)}2 where mt(w, x) = β(x) + [w − π(x)]t

You may treat β̂ as a non-random function. In practice, we’ll split our sample in two
and estimate β̂ and τ̂ on different halves, which allows us to justify this rigorously.

Hint. Solve for τ̂β̂ and τ̂β explicitly by setting derivatives to zero, then compare the
results. When you do, pay attention to the mean and standard deviation of your terms.
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Step 1. Solving for τ̂ as a function of β

τ̂b = argmin
t∈R

1
n

n∑
i=1

{Yi − mt(Wi ,Xi)}2 where mt(w, x) = b(x) + [w − π(x)]t

solves

0 =
d
dt

∣∣∣∣
t=τ̂b

1
n

n∑
i=1

{Yi − b(Xi)− [Wi − π(Xi)]t}2

=
1
n

n∑
i=1

2{Yi − b(Xi)− [Wi − π(Xi)]τ̂b} × −[Wi − π(Xi)].

Rearranging,

2
n

n∑
i=1

[Wi − π(Xi)]{Yi − b(Xi)} =
2
n

n∑
i=1

[Wi − π(Xi)]
2τ̂b

and therefore

τ̂b =
1
n
∑n

i=1{Wi − π(Xi)}{Yi − b(Xi)}
1
n
∑n

i=1{Wi − π(Xi)}2
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Comparison

τ̂b =
1
n
∑n

i=1{Wi − π(Xi)}{Yi − b(Xi)}
1
n
∑n

i=1{Wi − π(Xi)}2

for b = β̂ and b = β. Comparing,

τ̂β̂ − τ̂β =
1
n
∑n

i=1{Wi − π(Xi)}[{Yi − β̂(Xi)} − {Yi − β(Xi)}]
1
n
∑n

i=1{Wi − π(Xi)}2

=
1
n
∑n

i=1{Wi − π(Xi)}{β(Xi)− β̂(Xi)}
1
n
∑n

i=1{Wi − π(Xi)}2

What this tells us about the difference τ̂β̂ − τ̂β .

1. It’s almost an average of independent random variables with mean zero,
as E{Wi − π(Xi)|Xi} = π(Xi)− π(Xi) = 0.

2. It would be if we replaced the denominator with its expectation,
which the law of large numbers more or less justifies.

τ̂β̂−τ̂β =
1
n
∑n

i=1{Wi − π(Xi)}{β(Xi)− β̂(Xi)}
1
n
∑n

i=1 E{Wi − π(Xi)}2
×

1
Q

for Q =
1
n
∑n

i=1 {Wi − π(Xi)}2

1
n
∑n

i=1 E{Wi − π(Xi)}2

→1
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Making Sense of This

τ̂β̂ − τ̂β =
1
n
∑n

i=1{Wi − π(Xi)}{β(Xi)− β̂(Xi)}
1
n
∑n

i=1 E{Wi − π(Xi)}2
×

1
Q

for Q → 1

If we ignore the largely irrelevant factor 1/Q (see Slutsky’s Theorem), then …

1. This difference is an average of independent mean-zero random variables.
2. So it’s approximately normal with variance 1

n × the average of their variances.

What is this variance?

n × V =
E 1

n
∑n

i=1{Wi − π(Xi)}2{β(Xi)− β̂(Xi)}2[
E 1

n
∑n

i=1{Wi − π(Xi)}2
]2

=
E〈u, v〉L2(Pn)[
E‖u‖L1(Pn)

]2 for u(w, x) = {w − π(x)}2

and v(w, x) = {β(x)− β̂(x)}2.

We can bound this using Hölder’s inequality.
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Bounding the Variance (Option 1)

n × V =
E〈u, v〉L2(Pn)[
E‖u‖L1(Pn)

]2 for u(w, x) = {w − π(x)}2

and v(w, x) = {β(x)− β̂(x)}2.

Idea: 〈u, v〉L2(Pn) ≤ ‖u‖L∞(Pn)
≤‖u‖∞

‖v‖L1(Pn)

n × V ≤
E[‖u‖∞ ‖v‖L1(Pn)][

E‖u‖L1(Pn)

]2

≤
E[1 · ‖v‖L1(Pn)][
E‖u‖L1(Pn)

]2

=
‖β − β̂‖L2(P)[

E 1
n
∑

i{Wi − π(Xi)}2
]2

Note. E ‖u‖L1(Pn) =
1
n
∑

i
E{Wi − π(Xi)}2 =

1
n
∑

i
EVar[Wi | Xi ]
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Bounding the Variance (Option 1)

n × V =
E〈u, v〉L2(Pn)[
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Idea: 〈u, v〉L2(Pn) ≤ ‖u‖L∞(Pn)
≤‖u‖∞

‖v‖L1(Pn)

n × V ≤
E[‖u‖∞ ‖v‖L1(Pn)][

E‖u‖L1(Pn)

]2

≤
E[1 · ‖v‖L1(Pn)][
E‖u‖L1(Pn)

]2

=
‖β − β̂‖L2(P)[

E 1
n
∑

i{Wi − π(Xi)}2
]2

Note. E ‖u‖L1(Pn) =
1
n
∑

i
E{Wi − π(Xi)}2 =

1
n
∑

i
EVar[Wi | Xi ]
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Bounding the Variance (Option 2)

n × V =
E〈u, v〉L2(Pn)[
E‖u‖L1(Pn)

]2 for u(w, x) = {w − π(x)}2

and v(w, x) = {β(x)− β̂(x)}2.

Idea: 〈u, v〉L2(Pn) ≤ ‖u‖L1(Pn) ‖v‖L∞(Pn)
≤‖v‖∞

n × V ≤
E‖u‖L1(Pn) ‖v‖L2(Pn)[

E‖u‖L1(Pn)

]2

≤
E‖u‖L1(Pn) ‖v‖∞[

E‖u‖L1(Pn)

]2

≤
‖v‖∞

E‖u‖L1(Pn)

=
‖β − β̂‖2

∞
1
n
∑

i EVar[Wi | Xi ]

This approach gives us a bound that blows up less when you have a not-all-that-random treatment assignment, i.e. smallVar[Wi | Xi ],

but involves a norm ‖·‖∞ on β − β̂ that’s both bigger and harder to analyze than the two-norm that we had in our first bound. 25
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1
n
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Conclusion

The difference τ̂β̂ − τ̂β (more or less, i.e. ignoring Q) has mean zero and …

standard deviation
√

V ≤
‖β − β̂‖L2(P)√

n
×

1
1
n

∑
i EVar[Wi | Xi ]

Therefore, if we have a consistent estimate of β, i.e. if ‖β − β̂‖L2(P) → 0 …

• this difference is negligible relative to 1/
√

n, i.e., (τ̂β̂ − τ̂β)/(1/
√

n) → 0

• and therefore negligible relative to the random variation of the oracle estimator
τ̂β , which has standard deviation proportional to 1/

√
n.

One implication is that, in large samples, it doesn’t matter whether you use the actual
estimator τ̂β̂ or the oracle estimator τ̂β . They have the same asymptotic distribution.
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