Non-Gaussian Noise



Review: Probabilistic Classification

Last time, we talked about probabilistic classification,
i.e. regression with classification noise.

1—p(X:) wp p(Xy)
—u(X;) wp. 1 — pu(X;)

By comparing widths, we showed that this is easier than regression with ...

1 n
[ = argmin — E {Y,vfm(Xi)}2 where Y; = p(X;)+e; for e; = {
meM Ty

1. random sign noise, s; = £1 each w.p. 1/2.
2. gaussian noise og; of standard deviation o = 1.25.

Easier in the sense that our crossing-point
argument gives us a better error bound.
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Starting Point

Today, we're going to generalize that result to regression with any kind of noise.
We'll start with the same abstract bound. It applies no matter how noise is distributed.
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where  w¢(V) = Erlnea\i((e V) Ly (Py) aNd E, = Eigiz}).cngf.

This bound depends on the model M and the distribution of the noise ¢
in a complex, entangled way: through the width we (M.).



Our Approach

To disentangle the impact of the model
and noise distribution, we'll bound this
width in terms of gaussian width.

we(Ms) < aw(Ms)

for aw depending on e but not M or s.

At the heart of this comparison we(:) < aw(-) are two ideas.

1. Symmetrization. We'll substitute for €; a variant that's symmetric around zero.

€; — e;—¢, where € isanindependent copy of ¢;

This substitution increases width: we(+) < we_/(+).
2. Contraction. We'll substitute a gaussian vector' for our symmetrized noise € — ¢’.
We can bound the impact of this substitution in a model-invariant way.

We (1) <2Mpws(-) < V2r My, x w(-) for M, = Elénlaxn|sl|

This lets us re-use our gaussian width calculations
to analyze regression with any noise distribution.

Tor a random-sign vector



An Example



Symmetrization

we(V) < Ws(e—e’) (V) 2w (V)

n n
Emax g g;v; = Emax (ei —Eeh)v;
VEY 4 vEY 4 .
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(b) n n n
< Es; Emax E sie; + Es E max E sisgv,‘ = 2E; Emax E £;8;V;.
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Symmetrization

WE(V) < Ws(e—e’) (V) <2 WSE(V)
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Emax slvz = Emax E —Ee)v;
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< E,Emeaé( E sie; + EsE/ mea\); E si€hv; = 2E5Em€a§( E €453 V;.
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i=1 i=1 i=1

(a) Replacing ; with s;(e; — €7,) is 'free.
- We stopped here in our classification example because e; — &} was easy to bound.
- Generally, we take an extra step to express things in terms of ¢; again.

(b) Replacing e; with s;e; increases width by at most 2 x.



8 dis
Wy (V)=wan(V) < Elnlles wn(V) if 5 =" —n.
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- We can 'contract out’ any symmetrically distributed noise vector n by ...

Lsi

1. multiplying in independent random signs s;. Symmetry = s;n; = n;.
2. maximizing over a cube containing 7.
- We just have to use a big enough cube.
- In our classification example, n = e — &’ was in the unit cube [—1, 1]™ deterministically.
+ Generally, we maximize over a random cube [—||7|loo, [[7]loo]™
+ And we can pull out the cube’s radius ||n||s as a multiplicative factor.



Symmetrization, Contraction, and Gaussian Noise

Figure 2: real noise — symmetrized noise | scaled sign noise <« scaled gaussian noise

After symmetrizing and introducing random signs, i.e. making the substitution
g — si(es — €y),
we ‘contract out’ the symmetrized noise ¢ — €’ to get a bound in terms of random-sign width.
We(V) € WoeenV) < lle = €' llaowa(V) < lle = & lloo 1.25 w(V)
We can substitute 1.25 times gaussian width because that's at least as large as random sign width.
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Implications for Regression

we(V) < Mwy(V) < 1.25M w(V)
for M=E|e—¢lloc < 2Ele]loo-

In terms of our crossing-point bounds, regression with arbitrary independent noise,
ie. Yi=pu(X;)+e; where e1...e,areindependent,
is no harder than with scaled random sign noise or with gaussian noise

+1 wp. 1/2

i.e. g = /L(X,L') + MS, for S; =
—1 wp. 1/2

= p(X;) +1.25Mg; for g; ~ N(0,1)

The scale factor is 2 x the expected magnitude of our noise vector's largest element.



Figure 3: standard gaussian noise —scaled random sign noise —»scaled gaussian noise

- This isn't the absolute best bound we can get.
- For example, if we start with standard gaussian noise, we lose ...
- ..a factor of roughly 74/log(2n) going to random sign width and back.

we(V) < 2wy (V) < 2Xx24/2log(2n) wy(V) < 44/21og(n)x \/§ we (V) = 7¢/log(2n) we (V).

(a) ‘Symmetrization’ cost us a factor of 2.
(b) Contraction costs us a factor of E max;<n|e;| < 2+/2log(2n).
(c) Converting random signs back to gaussians costs us a factor of /3 = 1.25.

We're in the right ballpark. For sample sizes n between 50 and 50 million, that factor is between
15 and 30. But if we want a more precise error bound, we need to be a little more careful.



Sampling




What We've Done

We have a bound that's valid for any signal x and any vector of independent noise e.

. o 2 52
2 — s oy Pn) < 2VZEn <s+ ”671) w.p. 1— ¢ for = > ws(Msy)

- It depends on the model’s size through the critical radius of random-sign width.
s satisfying s%/2 > wo(Ms) for Me={meM : ||m—p*|r,p,) < s}

+ This is a one-number summary of the random-sign width of neighborhoods ...
- ..of the model's best approximation to the signal. It's the summary that matters.

- It depends on the noise’s size through the expected maximum square.

%, = E max |g;|?
icl..n



What does this tell us?

Bounds like this say how close i and p* are, on average, on our sample Xj ... Xy.

LS ) - ) < .
i=1

It doesn't tell us how close they are in the gaps between those points.

- Let's think about what happens when Xj ... X, is are drawn independently
from some distribution P. Think sampling with replacement from a population.
- We'll bound the population root mean squared error || — p*| 1, (p)-



What Population Mean Squared Error Is

It's the mean squared error we make at random point X’ distributed like X7 ... X,,.
12— 1112, py = Bxr [{(X') — u*(X))}?]

That's the integral of the squared distance between the two curves,
multiplied by the density of X;.

|2 — lt*H%2<p) = /{[L(m) — p*(@)}?p(x)de  if  X; hasthe density p(z).




Why we care about Population Mean Squared Error: Generalization

If we're interested in average accuracy for a bunch of new points X7 ... X/,
distributed like Xj ... X, that's more or less exactly what it is.

’
n

I = 120 = B [{A(X") — n(x)}2] & 2 7 o AACD —wxXD)

This can be a bit different from accuracy on our original sample X ... X,,.

- BV regression spends its ‘variation budget’ jumping to fit on the original sample.
- Between those points, it doesn’t know whether it should jump or not.

- So we can get larger error at our new points.

- It's usually not much larger, but sometimes it is. We'll see why.



Why we care about Population Mean Squared Error: Generalization

If we're interested in average accuracy for new points from a different distribution Q,
we can bound this by comparing this distribution’s density to that of our observations.

= S {ACD) — (KDY & g = w3, g = / (o) = 11229 2y do
=il
q(z)

< maXﬁHu H ”%2(}")-



Why we care about Population Mean Squared Error: Generalization

If we're interested in accuracy at a specific point z/, we can
think of this new distribution @ as a little bump around z’.

{a(a’) = (@)} = o = plliyony for Q= N(,é).



Same Argument, Different Neighborhood

M M

M\ M,

- We want to show that /i is in a population-distance neighborhood of p.
- Or, if we've chosen the model wrong, at least its best population-distance approximation.

P EM, for M= {meM: lm—pll,e) < sh for u* = argminllm—pulr, )
- We'll do this using essentially the same argument we used to bound sample MSE.
1. We know that the 4i's squared error loss is at least as good as p*'s.
2. We find a radius s for which every curve with this property is in the neighborhood M.
- It amounts to showing the loss difference ¢(m) — £(u*) is positive
outside this neighborhood.

me M, if meM, and £(m)—£(p*) > 0forallm € M\ M;



Reduction to a Maximal Inequality

() = £u") = = 37 Zi(m) i= {m(X) = (X)) =2 {¥i = " () Him(Xs) — u* (X0)}
i=1
=E Z;(m) + % Z Zi(m) — E Z;(m).
V=1

M

Convexity Helps
as Usual.

pr
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1. The loss difference is positive outside the neighborhood if it's positive on its boundary.

me M, if me M, and £(m)—£L(p*) > 0forallm € M

s

2. The projection theorem tells us an unwanted term in E Z;(m) is non-negative.

B [{Yi -t (KO Hm(X) -t (X0}] = ~E HEm X1 wx»}{m(x» W (X0}

(n* _M’m_“*>b2(1)) >0 forall meM

. il &
It follows that m € M, if me M, and s>> max — E Zi;(m) — E Z;(m)
meM? n =



Bounding the New Maximum

We show this maximum is approximately constant, i.e. close to its expectation.

Var(Z)
on

% o= Z; —-EZ; satisfies Z<EZ
B 2o B A <824

wp.1—4

We use symmetrization to bound its expectation in terms of random-sign width.

(a) Write the centers E Z;(v) in terms of an independent copy of our sample.
(b) Compare the result to a maximum of an average of symmetric random variables.
(c) Introduce random signs and compare to two copies of a simpler maximum.

n
(@
EZ £ Ey 2 E,/ ; {Zi(m) — Z(m)}

- n
< EzE, mrgiit(g Z} {Zi(m) — Z](m)}

(c) n ,
< EzE, E; rrL,rl;f}Z)/(\/lg z:; siZi(m) —8;)Z;(m")

=2EzE; a Zi(
B g, S s
We can use the Efron-Stein inequality to bound the variance. Come back and try it later!

Var(Z) < s ZE {Zi(7n) — ﬁv)}i for m = avi;r/r\lAixZZ i(m) — E Z;(m)

=

<... 16



Contracting Out Lipschitz Functions

What we get is the expected random-sign width of some set of vectors,
but it's not just the set of the vectors in our neighborhood M — u*.

me

n
EZ <2EE, max Z s Zi(m)
MS i=1

<4E ma. m — 5 E; ma si{m(X;) — p* (X;
< {me/@fg” oo Py + I HLOC(PH)} ‘me/\fg; {m(X;) — p”™ (Xi)}

We've compared that to the width of the neighborhood itself using ...
Lemma (Lipschitz Comparison)

n n
Es iYi(vi) < LE; v | i(ui) — i(vi)| < Llu; — v forall w, .
g D () S LEmax S s f Wi(w) ~ ()| < Hu = wl forall wv eV

For ¢;(v) = 'Ui272{ Yi—p (Xi) v and V = {m(X1)—p* (X1) ... m(Xp)—p™ (Xn) : m € M},

that's 1, api{m(X;) — p" (X))} < L m(X;) — pt (X
o max > sipi{m(X) =t (X} < 7;2%?;3,{% ) — w*(Xi)}

5 =1
where L = max max "L/);{‘HL(X{,) — (X))}
i mEMY

= max w{gﬁg\?{m(&) = p (X))} = 2{Yi — p" (Xa)}

i

< 2y:g%(?\|mfﬂlhoc<pn) + 2[lell Lo (Pn) - 17



Interpretation

N . Var(Z
i —n ||L2(P)§S><2{\/En+B}+\l 5( ) wp.1—4

2
if % >Ewy (M) and |lm— pflee < B
This is the bound we’'d get on sample MSE with additional scaled random-sign noise,
i.e. ifwe'd observed  Y; = pu(X;)+e;+ Bs;
Left: With little noise, our estimator f fits substantially better at the sample points X;.

Right: With more, it doesn’t. The observations are far enough from pu that
we can't estimate it all that precisely even where we have some data.



Signal Recovery is regression without any noise at all. In that case (£,, = 0),

- Var
la— ulryey < sx 2{ V24 B} + 4/ === wp.1-4

if S >BEws(M,) and |m—plles < B

E | %

This is the bound we'd get on sample MSE with only scaled random-sign noise.

i.e. if we'd observed  Y; = u(X;) + Bs;

- This is an extreme case of the low-noise regime. And it's still hard.
- When you want to estimate p between the sample points X ... Xy, ..
..what you want to see obscured by bounded ‘sampling noise’ € [— B, BJ.



REEEES

Chapter 6 of Talagrand’s Upper and Lower Bounds for Stochastic Processes.

- Random Signs vs. Gaussians: Proposition 6.22
- Contraction: Lemma 6.4.5

- Lipschitz Contraction: Theorem 6.51

20


https://link.springer.com/book/10.1007/978-3-030-82595-9

Appendices




Appendices

Boundedness



Our Population MSE bound introduces a new consideration: boundedness of
|[m — pllso in neighborhoods of p*.

. Var(Z
g — iy < s x 2{VZu + B} + 5() wp. 136
2

if

‘% >Ewy(Ms) and [lm— pllee < B

Getting a bound B can take a bit of work. There are options.



Option 1. Baking it into the Model.

M={m : ||mlloc <B and prv(m) < B}

= llm = plloo < lImlloo + lltlloe < B+ [lulloo
M={m : m(0)=0 and pry(m)< B}

_—



Option 2. Arguing Based on Bounded Data.
In many models, you can show that ji is will be within the range of the data.

ie. minY; <ji(z) < maxY;

i<n i<n

This is true, in particular, for Monotone and Bounded Variation Regression.
We can add this constraint to our model when doing our analysis.

i —p* o,y <s if €m)—€u*) >0 forall meM...
- With [mlles < B and [m — p@*| g,y > s



The are other options.
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