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Smoothness constraints

So far, we’ve talked about two models based on smoothness constraints.

M1 =
{

m : ‖m′‖L1 ≤ B
}

The Bounded Variation Model

M∞ =
{

m : ‖m′‖L∞ ≤ B
}

The Lipschitz Model

Today we’ll look at one that’s similar, but more convenient: the Sobolev model.

M2 =
{

m : ‖m′‖L2 ≤ B
}
.

It bounds the mean square of the derivative’s absolute value, not the max or mean.
It’s ‘between’ the other two. I’ll leave the proof of this as an exercise.

We’ll focus on the B = 1 case today to keep the math simple.
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Exercise

M∞ ⊆ M2 ⊆ M1

Prove it! Use the ‘for differentiable functions’ definitions of these models.

Hint. It’s equivalent to show the corresponding seminorms have the reverse order.

ρp(m) = ‖m′‖Lp satisfies ρ1(m) ≤ ρ2(m) ≤ ρ∞(m).
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Fourier Series Representation

There’s an equivalent definition in terms of an orthogonal basis for functions on [0, 1].

M =

{
m :

∫ 1

0
m′(x)2dx ≤ 1

}
=


∞∑

j=0
mjφj(x) :

∞∑
j=0

λjm2
j ≤ 1


where

∫ 1

0
φj(x)φk(x)dx = 0 for j 6= k.

• We call this a Fourier series representation.

• It makes stuff looks a bit like what you’d see in intro classes.

• We can think of the higher order terms — φj where λj is large — much like
we’d think about quadratic terms, interactions, etc., in linear regression.

In fact, these basis functions are cosines of increasing frequency.

4



Cosine Series

M =


∞∑

j=0
mjφj(x) :

∞∑
j=0

λjm2
j ≤ 1


for φj(x) =

√
2 cos(πjx) and λj = π2j2.

Q. What’s the correspondence between coefficients and curves? 5
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Cosine Series
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j=0
mjφj(x) :

∞∑
j=0

λjm2
j ≤ 1


for φj(x) =

√
2 cos(πjx) and λj = π2j2.

Q. What’s the geometric significance of 1√
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Where the Series Representation
Comes From



Sobolev Models and Self-Adjoint Operators

We use integration by parts to write our model in terms of a self-adjoint operator on
the vector space of even 2-periodic functions: the negated second derivative.

M =

{
m :

∥∥∥∥ d
dx

m
∥∥∥∥2

L2

≤ 1
}

=

{
m :

〈
−

d2

dx2 m, m
〉

L2

≤ 1
}

We think of our function on [0, 1] as even 2-periodic functions for convenience.
To do this, we reflect them across the y-axis and continue them periodically.
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Eigenvalues and Eigenvectors

Self-adjoint operators are like symmetric matrices, but more general.
Like a symmetric matrices, their eigenvectors are an orthogonal basis for the space.

In this case, we’re talking about the space of even 2-periodic functions.
So these eigenvectors are the even 2-periodic functions that solve this equation.

−
d2

dx2 φ = λφ for some corresponding eigenvalue λ ∈ R

What are they?

φj(x) =
√

2 cos(πjx) and λj = (πj)2 for j = 0, 1, 2, . . .

We know they’re orthogonal. Not because we remember our trigonometry formulas
from high school, but because eigenvectors of self-adjoint operators always are.

〈φj , φk〉L2
= 0 for j 6= k

And we’ve scaled them so they’re unit-length because it’s convenient.

〈φj , φj〉L2
= 1
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Our Fourier Series Characterization

Because our eigenvectors are a basis, we can write any
function in our space as a combination of them.

m(x) =
∞∑

j=0
mjφj(x) with 〈φj , φk〉L2

=

{
1 if j = k
0 otherwise

.

Note that the function m(x) and the sequence of coefficients mj are different things.
But they both describe the same function. That’s why we use the same letter m.

Let’s show our model can be described as the set of these functions with coefficients
in an ellipse defined in terms of the eigenvalues λj . It’s an easy calculation.

m ∈ M ⇐⇒ 1 ≥
〈
−

d2

dx2 m, m
〉

L2

=

〈
−

d2

dx2

∑
j

mjφj ,
∑

k
mkφk

〉
L2

=

〈∑
j

mjλjφj ,
∑

k
mkφk

〉
L2

=
∑

j

∑
k

λjmjmk 〈φj , φk〉L2
=

∑
j

λjm2
j
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Smoother Models

Figure 1: Least squares estimators for s=1 and s=2

• We did all this stuff for the modelM1 with one bounded derivative.
• But we can characterize modelsMk with more bounded derivatives easily.
• We use the same basis and powers of the same eigenvalues.

Mk =
{

m : ‖m(k)(x)‖L2 ≤ 1
}

=

m(x) =
∞∑

j=0
mjφj(x) :

∞∑
j=0

λk
j m2

j ≤ 1
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Smoother Sobolev Models and Fourier Series

Mk =
{

m : ‖m(k)(x)‖2
L2

dx ≤ 1
}

=


∞∑

j=0
mjφj(x) :

∞∑
j=0

λk
j m2

j ≤ 1

.

Why?

The relevant seminorm involves the kth power of the second derivative operator.

‖m(k)(x)‖2
L2

=

〈
−

d2

dx2 · · ·
k times

−
d2

dx2 m, m
〉

via integration by parts

And the kth power of any operator T has …

• the same eigenvectors φj as T itself.

• eigenvalues λk
j that are powers of the eigenvalues of T .
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Fractional Derivatives and Sobolev Models
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Why Sobolev Models? Why Not?



Todo: Make more of a discussion.
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Advantages

1. In Fourier-series terms, they’re familiar.
• They can help us explain things to people with intro-stats level background.
• And understand their work better. e.g., we can use them to think about how well we can
approximate a smooth function by a polynomial of a given order.

2. They’re easy to implement.
• We don’t need clever model-specific tricks to code up and understand things.
• We did for using Lipschitz or Bounded Variation or Monotone Regression models.

3. They’re easy to generalize.
• It generalizes very naturally to higher order-derivatives. Just change the power of the
eigenvalues.

• We’d have to work a bit harder to generalize our implementation (and understanding) of
our other smooth models.

M =

{
m :

∫ 1

0
|m(p)

(x)|dx ≤ B
}

The Bounded Variation (p − 1)st Derivative Model

M =

{
m : max

x
|m(p)

(x)| ≤ B
}

The Lipschitz (p − 1)st Derivative Model

• The generalization to multi-dimensional covariates is straightforward too. Next week.
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Disadvantages

1. It’s a bit harder to understand intuitively.
• I can see from a drawing whether a curve is increasing and whether its derivative is.
• Or whether it has has small Lipschitz or TV seminorm.
• With this model, I may have a rough sense, but it’s not as easy.

2. Maybe it’s not quite what we want.
• Maybe we know we want a Lipschitz model, e.g. if we’re doing RDD.
• We’d want to ensure it doesn’t do anything weird at the data’s edge.
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Technical Details



Weak Derivatives
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Review



A review of orthogonal bases in Rn

• A set of vectors v1 . . . vn is a basis if we can write every vector
in Rn as a unique weighted average of the vectors in the basis.

for all v ∈ Rn , there exists unique α ∈ Rn such that v =

n∑
k=1

αkvk .

• A basis is orthogonal if all pairs of basis vectors have zero inner product.

〈vj , vk〉 = 0 for j 6= k.

• Eigenvectors of a symmetric matrix T are an orthogonal for two inner products
1. The usual inner product, the dot product 〈u, v〉2 .
2. An inner product involving T , 〈u, v〉T = 〈Tu, v〉2 .

And they form a basis for Rn .
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Proving orthogonality of eigenvectors

Orthogonality in the dot product 〈·, ·〉2

Let v1 . . . vn be eigenvectors of symmetric T with distinct eigenvalues λj : Tvk = λkvk .

λj〈vj , vk〉2 = 〈Tvj , vk〉2
(Tvj)T vk=vT

j TT vk

= 〈vj ,Tvk〉2
vT

j (TT vk)=vT
j (Tvk)

= λk〈vj , vk〉

Because λj 6= λk , this is true only if vj , vk are orthogonal in the dot product 〈·, ·〉2 .

Orthogonality in the inner product 〈·, ·〉T = 〈T ·, ·〉2

〈Tvj , vk〉 = λj〈vj , vk〉2 = 0 because we have orthogonality in the dot product.
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Orthogonal bases for square-integrable functions on [0, 1]

• A set of functions v1, v2, . . . is a basis if we can write every square-integrable
function on [0, 1] as a unique weighted average of the functions in the basis.

for all v :

∫ 1

0
v(x)2dx < ∞, there exists unique α1, α2, . . . such that v =

∞∑
k=1

αkvk .

• A basis is orthogonal if all pairs of basis functions have zero inner product.

〈vj , vk〉 = 0 for j 6= k.

• Eigenvectors of a ‘symmetric matrix’ T are orthogonal for two inner products
1. The usual inner product, 〈u, v〉L2 =

∫ 1
0 u(x)v(x)dx.

2. An inner product involving T , 〈u, v〉T = 〈Tu, v〉L2 .

And they form a basis, too. Here T is a symmetric matrix if 〈Tu, v〉L2 = 〈u,Tv〉L2 .

Technical Detail
By a symmetric matrix, I mean a compact self-adjoint operator.

Theorem (The Spectral Theorem)
Suppose T is a compact self-adjoint operator on a Hilbert space V . Then there is an
orthogonal basis of V consisting of eigenvectors of T . Each eigenvalue is real.

The derivative isn’t compact, but its inverse is. That turns out to be what matters.
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A symmetric matrix of interest

It’s convenient to think of our functions as 2-periodic functions of x ∈ R.

• That is, functions with u(x + 2k) = u(x) for k ∈ Z.
• Since they’re really functions on [0, 1], we just define u(x) this way for x 6∈ [0, 1].
• And then 〈u, v〉L2 = 1

2
∫ 1
−1 u(x)v(x)dx = 1

2
∫ 0
−1 u(x)v(x)dx + 1

2
∫ 1

0 u(x)v(x)dx .

This isn’t anything meaningful—it’s all just a trick to simplify notation.

For periodic functions, we can express a first-order Sobolev derivative constraint
in terms of the second derivative. We use integration by parts.

∫ 1

−1
m′(x)2dx =

∫ 1

−1
u(x)v′(x) for u = m′ , v = m

= u(x)v(x) |1−1 −
∫ 1

−1
u′(x)v(x) integrating by parts

= 0 −
∫ 1

−1
m′′(x)m(x) substituting and using periodicity

= 2〈−
d2

dx2 m,m〉L2
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The negated second derivative operator

We can show the second derivative operator -∆ u = −u′′ is a self-adjoint operator.

−2〈u,−
d2

dx2 v〉L2 =

∫ 1

−1
u(x)v′′(x)dx

= u(x)v′(x) |1−1 −
(

u′(x)v′(x) |1−1 −
∫ 1

−1
u′′(x)v(x)dx

)
=

∫ 1

−1
u′′(x)v(x)dx = −2〈

d2

dx2 u, v〉L2 .

Implications

• This means the eigenvectors of − d2

dx2 are an orthogonal basis
for our space of periodic functions.

• And they’re orthogonal in the sense of the usual inner product
and the inner product of derivatives.

〈−
d2

dx2 u, v〉L2 = 〈u′, v′〉L2 .
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